Searches for dark sector particles (including long-lived mediators and missing E_T signatures) in ATLAS and CMS

Binbin Dong - Michigan State University
On behalf of the ATLAS and CMS collaborations

14th International Conference on Identification of Dark Matter

July 18 - 22, 2022

Dark Sector

 Hypothesis that DM is part of a larger dark sector consists of several new types of dark particles, which

mediator

Hidden

Sector

Standard

Model

- Do not couple to known SM fields
- Interact through a mediator

Portal relevant for dark sector - SM interactions depends on mediator spin and parity:

- Mediators can provide portal to DM candidates
- Dark sectors possibly accessible at ATLAS and CMS

ATLAS and CMS Experiments at LHC

Dark Photon, A'

- U(1) extension of the SM, introducing massive dark gauge boson γ_d , with kinetic mixing with SM photon
 - Parameters: kinetic mixing parameter ϵ and $m_{A'}$

Search strategies developed to target particles with different lifetime and mass:

Search strategies

Displaced Dark Photon Jets

- Benchmark model: Higgs portal production and vector portal decay (FRVZ model)
 - f_d produced in H decays, which decay to γ_d (via s_d) and HLSP
- Low mass A' could be produced via cascade decay of heavier states
 - Leptonic decays are dominant
 - Due to its small mass, resulting in collimated groups of fermions
 - Referred as dark-photon jets (DPJ)

- Cosmic-ray tagger defined to reduce muonic DPJ from cosmic-ray background
 - Based on a dense neural work
- QCD tagger defined to reduce multi-jet background
 - Based on convolutional neural network
 - Exploits the calorimeter energy deposits associated with jets

Dark Photon mass [GeV]

- Interpreted in terms of limits on kinetic mixing parameter ϵ , and dark photon mass $m_{A'}$
- Limits are shown for $B(H \rightarrow 2\gamma_d + X)$ in range 1-10%

When the lifetime of the γ_d is long enough, or system is boosted by initial-state-radiation (ISR) \Longrightarrow monojet signature

Dark Photons from Higgs Decay

- Some models predict a scalar Higgs boson coupling to a dark photon through a dark sector
 - Coupling probed in Higgs boson production

Observed and expected 95% CL limits $B(H \to \gamma \gamma_D)$ for $m_H = 125$ GeV :

VBF		ZH		VBF+ZH	
Obs. (%)	Exp. (%)	Obs. (%)	Exp. (%)	Obs. (%)	Exp. (%)
3.4	$2.7^{+1.2}_{-0.8}$	4.6	$3.6^{+2.0}_{-1.2}$	2.9	$2.1^{+0.9}_{-0.6}$

VBF production ATLAS plots <u>here</u>

Exotic Higgs 4L Decays

- Higgs decays to 4 leptons via promptly decay bosons
- Search for $H \to ZZ_D/Z_DZ_D \to 4e/4\mu/2e2\mu$
 - Dilepton pair candidates formed
 - SR defined by $m_{ll} \in [4,120]$ GeV, excluding mass window around Ybb bound states
- Dark vector bosons produced via hypercharge + Higgs portal models

$$m_{Z12} = (m_{Z_1} + m_{Z_2})/2$$

Exotic Higgs 4L Decays

- Results interpreted in term of upper limits on Higgs branching fraction
 - Higgs portal model: related to Higgs portal coupling κ
 - Hypercharge portal: related to kinetic mixing ϵ

Limits on model parameters

Narrow $\mu^{\pm}\mu^{\mp}$ Resonance Search

- Search for a narrow resonance decaying into a pair of oppositely charged muons
 - Looks for a narrow resonance in the 11.5 200 GeV mass range, omitting 75-110 GeV where Z boson production dominates
- Dedicated data scouting triggers employed comparing to standard triggers:
 - Operate at a significantly higher rate with a reduced amount of trigger-level information
 - Increase acceptance at $m_{\mu\mu} < 45$ GeV region

Events divided into categories based on $m_{\mu\mu}$ resolution:

- Barrel category ($|\eta| < 0.9$): ~ 1%
- Forward category (0.9 < $|\eta|$ < 1.9) : ~ 3%

Narrow $\mu^{\pm}\mu^{\mp}$ Resonance Search

- Model-independent upper limits on cross section as a function of $m_{A^{\prime}}$
- ▶ Dark photon interpretation with upper limits on ϵ^2 as a function of $m_{A'}$ in range [11.5,200] GeV

Hadronic Vector Portal Searches

- Simplified (leptophobic) vector portals recommended by the ATLAS/CMS
 - Assume DM is a Dirac fermion χ
 - Additional heavy vector/axial-vector particle Z^\prime mediating the SM-DM interaction
 - Focus on models where mediator exchanged in the s-channel

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q - g_{\ell} \sum_{\ell=e,\mu,\tau} Z'_{\mu} \bar{\ell} \gamma^{\mu} \ell ,$$

$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi - g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_{5} q - g_{\ell} \sum_{\ell=e,\mu,\tau} Z'_{\mu} \bar{\ell} \gamma^{\mu} \gamma_{5} \ell .$$

- Four free parameters
 - m_{DM} : DM mass
 - $m_{Z'}$: mediator mass
 - g_{DM} : coupling of a mediator-DM-DM vertex
 - g_q : coupling universal to all mediator-quark-quark vertices

Hadronic Vector Portal Searches

- Experimentally low mass and coupling regime probed via:
 - Jet substructure analysis for boosted mediators
 - Trigger level analyses
 - Scouting

Vector Portal Dark Matter

- Following recommendations of LHC DM working group, can set limits in $m_\chi-m_{Z'}$ plane
 - Can be compared to missing $E_{\it T}$ searches

The Higgs Portal Dark Matter

▶ In Higgs portal models, the Higgs boson acts as the mediator between SM particles and DM, strongly enhancing $B(H \rightarrow inv)$

- Limits on the spin-independent DM-nucleon scattering cross section in Higgs-portal models
 - Assuming a scalar or fermion DM candidate
 - Compared to direct DM detection experiments

Competitive bounds for low mass WIMP

Dark Higgs

- Dark Higgs model: DM particles acquire mass through their interaction with a dark Higgs boson
 - Search targets s+missing transverse energy signature
 - $s \to WW$ becomes relevant for $m_{s} \gtrsim 160~{\rm GeV}$

Presence of two oppositely charged and isolated leptons as main feature:

- 3D ML fit to $\Delta R_{ll} - m_{ll} - m_{T}^{l_{min},p_{T}^{miss}}$

Dark Higgs

Dark Higgs model: DM particles acquire mass through their interaction with a dark Higgs boson

- ATLAS searches in VV pairs from a decay of s
- $s \to WW$ becomes relevant for $m_s \gtrsim 160~{\rm GeV}$
- $s \to ZZ$ becomes relevant for $m_s \gtrsim 180~{\rm GeV}$

VV in fully hadronic decay targeted:

- SR: requires large E_T^{miss} from DM particle
- Provides sensitivity complementary to other DM searches using $X+E_T^{miss}$ signatures
- $s \rightarrow VV$ reconstructed with novel trackassisted reclustering (TAR) algorithm

Dark Higgs

VV in semilepton decay explored:

- SR: requires large E_T^{miss} from DM particle
- Provides sensitivity complementary to other DM searches using $X+E_T^{miss}$ signatures
- TAR jet reconstruction technique employed

Higgs-portal Displaced Searches

Long-lived particles (LLP) may decay to jets far from the interaction point (IP)

Result in secondary decays significantly displaced from the IP — displaced vertices (DVs)

Possible scenarios:

Particle decays in the ID, but far from the IP;
 or decays in the MS

Particle decays in the calorimeters

Figures from JPPNP3695(2019)

Calo - based

- Search for pair-produced LLP by a Higgs boson or another short-lived scalar
 - A variety of models considered

LLPs decaying mainly in the HCal or at the outer edge of the ECal

 Dedicated displaced-jet triggers employed

- Displaced jet tagger developed
 - Convolutional neural network employed, then fed into a long short-term memory (LSTM) network

(Tracker +)IVIS - based

 Exotic massive LLP decaying to a pair of oppositely charged muon (displaced dimuon)

Triggers require two muons reconstructed in the

MS alone

Events classified into three categories
 depends on if muons reconstruction includes
 trackers

arxiv: 2203.00587 submitted to Phys. Rev. D. arxiv: 2205.08582 submitted to JHEP

ATLAS

- Search targets events with two DVs in the MS
 - Muon Rol Cluster trigger employed
 - Signature-driven trigger
 - Selects candidate events for decays of LLPs
 - Dedicated algorithm used for MS DV reconstruction
 - Capable of reconstructing low-momentum tracks in a busy environment_

LLP Higgs-mediated Summary

- Simplified Hidden Sector toy model used as benchmark
 - Interaction between SM sector particles and HS particles occurs via a heavy neutral boson Φ
 - Φ decays to a pair of neutral LLPs
 - Each LLP decays to SM ff pairs

LLP Higgs-mediated Summary

- Higgs decays to long-lived particles
 - BR assumption differ from ATLAS, thus tricky to compare

Heavy Neutral Leptons in CMS

- Postulate the existence of right-handed neutrinos with Majorana masses
 - Explain neutrino masses
 - Predict heavy mass eigenstates, known as Heavy Neural Leptons (HNLs)
 - Decays maybe lepton number violating (LNV) or conserving (LNC)
 - A model with three HNLs can be incorporated a DM candidate
- One-HNL model with single-flavor mixing (1SFH) considered
- Events selected with three charged leptons
 - One originate from the primary interaction
 - The other two used to reconstruct displaced lepton
- B-jet tagging and cut narrow mass bands used for background rejection
- Fairly wide range of prompt-displaced sensitivity

 W^+

- Signal interpretations considered
 - One-HNL model with single-flavor mixing (1SFH)
 - Two quasi-degenerate HNLs with multi-flavor mixing (2QDH)
 - More realistic than the simple-flavor mixing model
 - First direct search carried out by ATLAS
- Displayed decay signatures studied
 - Dedicated reconstruction performed for displaced vertex (DV) with optimized secondary vertexing algorithm

Summary

- New physics might be hiding in a hidden sector
- Dedicated dark sector particle searches and interpretations are increasing in ATLAS and CMS
 - Extensive benchmarks and DM interpretations
 - Diverse range of unconventional signatures
 - Dedicated displaced searches
- No significant excess yet over the SM background
- Run 3 is here, stay tuned!

ATLAS Displaced Searches

CIVIS Displaced Searches

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Calo - based

- Displaced jet tagger developed
 - Convolutional neural network employed, then fed into a long short-term memory (LSTM) network

Calo - based Search

- A hidden sector benchmark model studied
 - Φ: A Higgs boson or a lower/higher-mass scalar boson
 - Decays into two long-lived scalars
- Heaviest fermion pair also considered when kinematically

accessible

- Displaced jet tagger developed
 - Convolutional neural network employed, then fed into a long short-term memory (LSTM) network

