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de Broglie wavelength can’t

Electron Proton HiggsNeutrino EarthPlanck

indirectly via microlensing
Greene, Kavanagh 2007.10722

exceed dwarf galaxy scales 
Would have been observed

Huge Range of Possible DM Masses 



Huge Range of Possible DM Masses 

Electron Proton HiggsNeutrino EarthPlanck

Must be bosonic (integer spin)

Pauli blocking limits fermion
or extended object

phase space density
GK, Sigurdson  1406.1171  Phys. Lett. B.

Must be primordial black hole

example: dark nuclei



Electron Proton HiggsNeutrino EarthPlanck

WIMPs

Huge Range of Possible DM Masses 



Organizing Principle:

Broad (& biased) survey of new ideas to detect DM
 in non-traditional “laboratories”
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More general category: Axion Like Particles — “ALPs“
“Axions” proposed to explain absence of neutron electric dipole moment 

Peccei, Quinn 1977, Phys. Rev. Lett.

Wave-like Dark Matter



More general category: Axion Like Particles — “ALPs“

Must be produced very “cold” in the early universe 
Otherwise would be highly relativistic

“Axions” proposed to explain absence of neutron electric dipole moment 

Peccei, Quinn 1977, Phys. Rev. Lett.

Wave-like Dark Matter



Saturating lower bound yields “fuzzy” dark matter 

Hu, Barkana, Gruzinov astro-ph/0003365 Phys. Rev. Lett. 

More general category: Axion Like Particles — “ALPs“

Doesn’t clump below ~ kpc scales, cuts off matter power spectrum

Must be produced very “cold” in the early universe 
Otherwise would be highly relativistic

How can these be DM candidates?

“Axions” proposed to explain absence of neutron electric dipole moment 

Peccei, Quinn 1977, Phys. Rev. Lett.

Wave-like Dark Matter



Begins oscillation when mass ~ Hubble

Redshifts like non relativistic matter 

Field initially displaced from minimum in the early universe

deBroglie wavelength > inter particle spacing (like a classical field)

Wave-like Dark Matter

scale factor



Wave-like DM + neutron stars

External B-field enables conversion

modifies Maxwell eqs.ALP coupling to photons 



ALP passing through a neutron star can convert into radio line

In plasma, photon gets longitudinal polarization “mixes” with ALP
conversion resonantly enhanced when   

External B-field enables conversion

modifies Maxwell eqs.ALP coupling to photons 

Wave-like DM + neutron stars

Huang, Kadota,  Sekiguchi, Tashiro 1803.08230 Hook, Kahn, Safdi, Sun 1804.03145
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Figure 1. The projected sensitivity to ga�� as a function of
the axion mass ma for �tobs = 100 hr and SEFD = 2 Jy.
The QCD axion is predicted to lie within the band, while
limits from CAST and ADMX (current and projected) are
indicated. We have taken ✓m = 10� and the solid (dashed)
curves assume ✓ = 90� (✓ = 120.5�). The lower mass cuto↵
is set by the lowest available frequency of current radio tele-
scopes, while the high-mass cuto↵ comes from requiring the
conversion radius to be outside the NS radius.

We take SEFD ⇡ 2 Jy for our estimates, though this may
be improved with future instruments such as the Square
Kilometer Array. Our sensitivity curves are defined by
1� significance, as discussed in the SM. We show sensi-
tivities calculated for two pulsar geometries. The solid
curve takes a generic value ✓ = 90� for the polar an-
gle of Earth in the NS frame, while the dashed curve is
tuned to ✓ = 120.5�, which gives the near maximal sig-
nal at low masses and which is also highly pulsed from
emission at orientations where rc ! r0. In both cases
we take a generic misalignment angle ✓m = 10�. Note
that the low-mass cuto↵ is set to the ma/(2⇡) = 50 MHz
threshold of typical radio telescopes, while the high-mass
cuto↵ is determined by the maximum mass for which the
conversion radius is outside the NS radius.

Another class of targets are NSs that occupy regions
of high DM density and/or low velocity dispersion. For
example, consider the magnetar SGR J1745–2900, which
is located R ⇡ 0.1 pc away from the Galactic Center [34–
37]. This magnetar has a magnetic field B0 ⇡ 1.6⇥ 1014

G and a period P ⇠ 3.76 s [34, 35]. While the magne-
tar was first discovered in X-rays, a highly pulsed and
variable ⇠mJy radio signal has been observed from the
magnetar (see, e.g., [36, 37]). The DM density in this
region is highly uncertain. Using the NFW and Burkert
fits from [38], we find that the DM density at R = 0.1 pc
is enhanced by a factor of 2 ⇥ 105 for the best-fit NFW
profile, relative to the local density, but only a factor
⇠4 for the best-fit cored Burkert profile. The cored pro-
files, however, may be in tension with new data from the

Galactic bulge (see, for example, [39, 40]). On the other
hand, if the DM distribution is described by a general-
ized NFW profile with an index � = 1.5, which is allowed
by the kinematic data available, then the enhancement
would be ⇠107. There is also the possibility of a DM
density spike near Sgr A*, the supermassive black hole
at the center of the Galaxy. With the density spike, the
DM density at R = 0.1 pc could be enhanced by a factor
⇠109 relative to the local density [41].
In Fig. 1, we show the projected sensitivity from 100

hrs observation of SGR J1745-2900, assuming both the
NFW DM profile (blue) and spike profile (purple), with
solid and dashed lines representing the two geometries
✓ = 90� and ✓ = 120.5�. We take v0 = 200 km/s and
d = 8.5 kpc for the distance to the Galactic Center and
assume MNS = 1M� and r0 = 10 km as before. De-
spite the fact that pulsed radio emission has been ob-
served from this magnetar, we have made these sensitiv-
ity estimates under the assumption that the dominant
noise source is the thermal noise in the telescope. Since
the non-thermal radio emission is pulsed, non-pulsed (or
pulsed but out-of-phase) DM-induced flux would likely
still be dominated by telescope noise. Interestingly, as
seen in Fig. 1, observations of SGR J1745-2900 could
be sensitive to the QCD axion over multiple orders of
magnitude in ma, depending on the DM density profile.
However, we stress that this sensitivity estimate relies on
the GJ model, which may not apply to the magnetar.

Alternatively, one could consider isolated NSs within
dwarf galaxies. In the Sagittarius dwarf galaxy, the cen-
tral DM density is enhanced by a factor ⇠5 ⇥ 105 com-
pared to the local density in the solar neighborhood,
and the velocity dispersion is low, v0 ⇠ 10 km/s [42].
For this estimate we have taken the cored DM density
profile from [42]. The globular cluster M54 appears to
be coincident with the center of the Sagittarius dwarf
galaxy, with the cluster having a core radius ⇠1 pc, a
mass ⇠2 ⇥ 106 M�, and a distance of around ⇠20 kpc
from Earth [43, 44]. Given the mass of M54, there are
likely many hundreds of NSs within the central core [45].
Assuming that just one of these NSs has the properties
of J0806.4-4123, we would obtain the sensitivity to ga��
shown in Fig. 1 (labeled INS in M54). If there are N such
INS’s in the field of view, then we may expect the sensi-
tivity to improve as 1/

p
N . The fact that all NSs radiate

at the same frequency from axion DM could make even
more distant galaxies promising targets.
A narrow radio line from a NS target could provide a

striking signature of axion DM. On the other hand, in
the absence of a signal, it will be di�cult to set a robust
limit on ga�� because of challenges in understanding con-
fidently the plasma density and time-dependent dynam-
ics in the inner regions of the magnetosphere. Towards
that end, it would be useful to incorporate the physics of
axion-photon conversion into NS simulations [46]. Such
work should lead to more precise predictions for the

Huang, Kadota,  Sekiguchi, Tashiro 1803.08230 Hook, Kahn, Safdi, Sun 1804.03145

Projections for radio searches aimed at isolated neutron stars
Assuming 100 hrs on Arecibo Telescope with effective flux 

No other radio emission except thermal

“axion” DM
coupling set

by mass

Axion

lab searches

Wave-like DM + neutron stars



Wave-like DM + active neutrinos

In vacuum oscillation probability 

Neutrinos change flavor “oscillate” as they propagate 

L
E

Length
Energy

mixing angle

mass splitting

GK, Machado, Necib, 1705.06740



Now couple neutrinos to wavelike DM

In vacuum oscillation probability 

Neutrinos change flavor “oscillate” as they propagate 
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Wave-like DM + active neutrinos

GK, Machado, Necib, 1705.06740



Now couple neutrinos to wavelike DM

In vacuum oscillation probability 

Neutrinos change flavor “oscillate” as they propagate 

L
E

Length
Energy

}

… modifies probability through Time-dependent neutrino mass shift…

Wave-like DM + active neutrinos

GK, Machado, Necib, 1705.06740



Need:

If period short wrt neutrino travel time: effect averages to zero
If period long  wrt observation time: unobservable 

What’s the relevant timescale?

Wave-like DM + active neutrinos

GK, Machado, Necib, 1705.06740
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In a two-flavor neutrino formalism, the instantaneous vac-
uum probability for ↵ ! ↵ survival is

P (⌫↵ ! ⌫↵) = 1 � sin2(2✓) sin2

✓
�m

2
L

4E

◆
, (7)

where L is the experiment baseline, E is the neutrino energy,
and both ✓ and �m

2 depend on � through Eqs. (5) and (6). If
the scalar oscillation period ⌧� ⌘ 2⇡/m� is longer than the
characteristic neutrino time of flight T⌫ , but shorter than the
total experimental run time, then neutrinos emitted at differ-
ent times will sample different values of � over the course of
a given experiment. In this regime, the effective oscillation
probability is the ensemble average

hP (⌫↵ ! ⌫�)i =

Z ⌧�

0

dt

⌧�
P (⌫↵ ! ⌫�), (8)

where for a given experimental baseline L = c/T⌫ , there is a
characteristic m� below which standard oscillation probabili-
ties can be distorted. In Eq. (8) we neglect the spatial variation
in � since this effect is suppressed by v ⌧ 1. If ⌧� & 10 min-
utes, the misaligned scalar oscillation can induce observable
time-variation in neutrino oscillation measurements (e.g. pe-
riodicity in the solar ⌫e flux) [2]. In this work, we study the
opposite, high frequency regime and find scalars with ⌧� ⌧

min distort neutrino oscillation probabilities even if this time
variation cannot be resolved.

The effect of fast averaging is intrinsically different for neu-
trino mixing angles and mass-squared differences. For mixing
angles, the net effect of averaging over � induces a shift in the
observed mixing angle relative to its undistorted value. Note
that the observed sin2 2✓ after averaging can never be zero or
maximal since, from Eqs. (3) and (6), we have
Z ⌧�

0

dt

⌧�
sin2 2✓(t) =

1

2

⇥
1 � J0(4⌘�) cos 4✓0

⇤
(9)

' sin2 2✓0
�
1 � 4⌘2�

�
+ 2⌘2� + O(⌘3�), (10)

where J0 is a Bessel function of the first kind and, to quadratic
order in ⌘�, the correction to the sin2 2✓(t) distribution is
negative (positive) for maximal (minimal) mixing. Thus
the observations of non-zero ✓13 [14] and nearly maximal
✓23 [15, 16] already constrain the available parameter space.

If the scalar primarily affects mass-squared differences (e.g.
through flavor blind yukawa couplings), the time averaging
has a more complicated functional dependence

Z ⌧�

0

dt

⌧�
sin2


�m

2
L

4E
(1 + 2⌘� cosm�t)

�
, (11)

which leads to additional L/E smearing and distorts the func-
tional form of oscillation probabilities, particularly near max-
ima and minima. Thus, the DiNO effect from Eq. (8) adds
an irreducible smearing to the oscillation probability signal,
similar to an experimental energy resolution, but at the prob-
ability level. This effect is shown in Figs. 1 and 2, which
present both instantaneous and �-averaged ⌫e ! ⌫e survival
probabilities as a function of neutrino energy for JUNO [17]

FIG. 1. Example neutrino oscillation probabilities for a variety of
scenarios at JUNO (top) and KamLAND (bottom). For both plots,
the thick red curve is the standard oscillation prediction for each
setup including the effect of energy resolution smearing (following
the prescription in Appendix A). The green and turquoise curves also
include the additional effect of �-induced smearing separately dis-
torting �m2

31 and �m2
21, respectively. For KanLAND we have as-

sumed a mean baseline between the nuclear reactors and the detector
of hLi = 180 km.

and KamLAND [18, 19] as well as ⌫µ ! ⌫µ and ⌫µ ! ⌫e

oscillation probabilities at the future experiment DUNE [20]
(see Appendix A for a discussion of the signal calculation).

PHENOMENOLOGY

Although a detailed experimental analysis is outside the
scope of the paper,2 we present estimates of the experimen-
tal sensitivities of current and future neutrino experiments in
terms of the ratio ⌘� taking into account possible new inter-
pretations of oscillation parameters. In Fig. 3 we summarize
our main results as bounds and projections on the m� � ⌘�

plane assuming separately that � only affects solar (top panel)
and atmospheric oscillations (bottom panel).

2 Such an analysis would require a careful treatment of neutrino energy re-
constructions, a daunting task to anyone outside the experimental collabo-
rations.
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FIG. 1. Example neutrino oscillation probabilities for a variety of
scenarios at JUNO (top) and KamLAND (bottom). For both plots,
the thick red curve is the standard oscillation prediction for each
setup including the effect of energy resolution smearing (following
the prescription in Appendix A). The green and turquoise curves also
include the additional effect of �-induced smearing separately dis-
torting �m2

31 and �m2
21, respectively. For KanLAND we have as-

sumed a mean baseline between the nuclear reactors and the detector
of hLi = 180 km.

and KamLAND [18, 19] as well as ⌫µ ! ⌫µ and ⌫µ ! ⌫e

oscillation probabilities at the future experiment DUNE [20]
(see Appendix A for a discussion of the signal calculation).

PHENOMENOLOGY

Although a detailed experimental analysis is outside the
scope of the paper,2 we present estimates of the experimen-
tal sensitivities of current and future neutrino experiments in
terms of the ratio ⌘� taking into account possible new inter-
pretations of oscillation parameters. In Fig. 3 we summarize
our main results as bounds and projections on the m� � ⌘�

plane assuming separately that � only affects solar (top panel)
and atmospheric oscillations (bottom panel).

2 Such an analysis would require a careful treatment of neutrino energy re-
constructions, a daunting task to anyone outside the experimental collabo-
rations.

vacuum

7% effect

Wave-like DM + active neutrinos

GK, Machado, Necib, 1705.06740
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oscillation parameters (top panel) or only atmospheric oscillation parameters (bottom panel). The upper left region labeled “⌧� > 10 min”
is the bound on anomalous periodicity in solar neutrino oscillations at Super-K/SNO [2] and the leftmost region labeled “⌧� > 10 years”
corresponds to scalar periods that are too long to have an observable effect in terrestrial experiments. In this regime, � is effectively a constant
background contribution to neutrino masses and mixings. The diagonal shaded region in both plots is the bound from energy loss in SN1987A
(see text and Appendix B). The dotted gray lines are the CMB bound on

P
i m⌫i < 0.23 eV if � constitutes all of the dark matter at the time of

recombination; the line moves between plots since the effect of coupling to light eigenstates (top panel) has less of an overall effect (see text).
The solid cyan (red) line labeled “T2K ✓23” (“Daya Bay ✓13”) indicates the current exclusion due to near maximal (minimal) measurement of
✓23 (✓13). Similarly, the solid blue line labeled “KamLAND �m2

21” is the existing bound from �m2
21 �-smearing. The dashed orange and

purple lines indicate the projected sensitivities for DUNE and JUNO, respectively. Note that each constraint depends on time variations only
on individual parameters as labeled (see text for details).

assumed the usual halo overdensity relation ⇢
�
� ⇠

105⇢�(z = 0).

� coupled to lighter eigenstates: In this regime, a sim-
ilar argument applies, but � now couples only to light
neutrinos with m1 ⇠ m2 ⇠

p
�m

2
21 ⇡ 0.008 eV. This

assumption translates into the requirement

⌘�(z = 0) ⌘

q
2⇢�

�

⇤m�
. 0.1 . (14)

However, the bounds in Eqs. (13) and (14) apply only
if � accounts for all of the dark matter at recombina-
tion; if it only constitutes a subdominant fraction of the

DM density, it need not be dynamical in the early uni-
verse, so the constraint no longer applies. In this work,
wherever the modulation effect exceeds these bounds,
we will assume that � oscillation begins after recombi-
nation.

• Solar neutrino periodicity: The observed temporal
stability of solar neutrino fluxes by Super-K imposes a
tight bound on neutrino mass variation over 10 min–10
year timescales [2, 29]. The period of � induced mass
variation in our setup is

⌧� =
2⇡

m�
' 10 min

✓
7 ⇥ 10�18 eV

m�

◆
, (15)

Effect likely also important for  ultra high energy and supernova  neutrinos 
Longer travel times and different energy profiles than terrestrial sources 

(accelerators + nuclear reactors) 

solid = excluded 
dashed = projection

Wave-like DM + active neutrinos

GK, Machado, Necib, 1705.06740
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2

II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
y�

2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates

m
2
h,`

= m
2
D
±mDmM ⌘ m

2
⌫
±

1
2�m

2
, (7)

and we define �m
2
⌘ y�mD

p
2⇢�/m�, where

�m
2
⇡ 2⇥10�15eV2

⇣
y�

10�10

⌘✓10�15eV

m�

◆⇣
mD

0.1 eV

⌘
, (8)

for the splitting between Weyl fermions as opposed to the
usual �m

2
ij
measured in oscillation experiments; here we

have taken the local density to be ⇢
�
�

= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as

|⌫ei =
1
p
2

�
|⌫hi+ |⌫`i

�
, (10)

|⌫si =
1
p
2

�
|⌫hi � |⌫`i

�
. (11)

The time evolution of a ⌫e state is given by

U(t)|⌫ei =
1
p
2


exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
1(t

0)

◆
|⌫1i

+ exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
2(t

0)

◆
|⌫2i

�
, (12)

which yields a ⌫e ! ⌫e survival probability

Pee(t) = |h⌫(t)|⌫ei|
2 = cos2

✓
1

4E⌫

Z
t

0
dt

0
�m

2(t0)

◆
. (13)

Using Eqs. (2) and (6) we obtain

1

2

Z
t

0
dt

0
�m

2(t0) =
y�mD

m�

p
2⇢�

Z
t

0
dt

0 cos (m�t
0 + ') ,

where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as

1�Pee = sin2
(
mD

2E⌫

y�

p
2⇢�

m
2
�

✓
sin [m�t+ ']� sin'

◆)
, (14)

where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order

�m� ⇠
y�mD

4⇡
⇠ 10�18 eV

⇣
y�

10�15

⌘⇣
mD

10meV

⌘
, (15)

from the interactions in Eq. (5). Thus, for small y� in the
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where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
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neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
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pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
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in Eq. (1). Thus, the full oscillation probability will de-
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ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
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where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
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it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2
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for the Dirac and Majorana contributions, respectively,
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
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ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
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it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
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The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as
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, (10)
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The time evolution of a ⌫e state is given by
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which yields a ⌫e ! ⌫e survival probability

Pee(t) = |h⌫(t)|⌫ei|
2 = cos2
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dt

0
�m
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Using Eqs. (2) and (6) we obtain

1

2
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dt

0
�m

2(t0) =
y�mD

m�

p
2⇢�

Z
t

0
dt

0 cos (m�t
0 + ') ,

where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as

1�Pee = sin2
(
mD

2E⌫

y�

p
2⇢�

m
2
�

✓
sin [m�t+ ']� sin'

◆)
, (14)

where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order

�m� ⇠
y�mD

4⇡
⇠ 10�18 eV

⇣
y�

10�15

⌘⇣
mD

10meV

⌘
, (15)

from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2

2
The operator kH

†
H|�|2 is also allowed by all symmetries and

can induce a large correction to m� if the coe�cient is not sup-

pressed. Exponential k ⌧ 1 suppression can be achieved in UV

models where H and � are localized on di↵erent branes in a

higher dimensional spacetime.
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Dark Sectors “Generalized WIMPs”
WIMPs

Dark Sector models have WIMP-like features, but span a broader mass range 
DM is microscopic particle and new 5th force couples it to visible matter

Like with WIMPs we care about 
Unlike WIMPs, weak force doesn’t set interaction strength

Many mechanisms to produce DM abundance in early universe 
Freeze out (like WIMPs)… but also “freeze-in” and “asymmetric DM”… etc.
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FIG. 1. Schematic of the experimental concept. Dark matter
passing through an oscillating electric field is deflected, setting
up propagating waves of alternating dark matter millicharge,
⇢�, and millicurrent, j�, densities. Dark matter waves flow
unimpeded through an electromagnetic shield, creating small
electromagnetic fields that can be measured with a resonant
LC circuit inductively coupled to a magnetometer (not de-
picted) inside the shielded detector region.

is shown in Fig. 2.

Millicharged and Millicharge-like Dark Matter. To il-
lustrate our idea, we consider the scenario in which DM,
denoted by �, couples to standard electromagnetism with
an e↵ective charge qe↵ ⌧ 1. This is often referred to as
“millicharged” DM, and in its simplest incarnation re-
quires no new particles beyond the DM itself. A natural
way for such e↵ective models to arise is when the DM is
charged under a hidden sector gauge boson A

0
µ (a “dark

photon”) that kinetically mixes with the SM photon [6],

L �
✏

2
Fµ⌫ F

0µ⌫ +
1

2
m

2
A0 A

02
µ , (1)

where mA0 is the dark photon mass and the dimensionless
coupling, ✏ ⌧ 1, controls the strength of kinetic mixing.
DM coupled to a massless dark photon (mA0 = 0) induces
an e↵ective millicharge

qe↵ = ✏ e
0
/e , (2)

in addition to DM self-interactions controlled by e
0,

where e is the SM electric charge and e
0 is the dark

photon gauge coupling. For non-zero mA0 , DM interac-
tions with SM matter are millicharge-like over distance
scales . m

�1
A0 and exponentially screened at larger dis-

tances. We consider an experimental apparatus local-
ized to O(meter)-scale distances, for which mA0 = 0 and
mA0 . meter�1

⇠ 10�7 eV are qualitatively indistin-
guishable. We focus on the massless case for simplicity
and discuss finite-mass corrections in the Supplementary
Material.

Sensitivity to this range of mediator masses is well
matched to models of sub-MeV DM production in the
early universe. The primary benchmark model for
production of sub-MeV DM is the “freeze-in” [2] of
a DM abundance from the annihilations of thermal
electrons [14–16] (and a related reaction, plasmon de-
cay [17]). These reactions generate a DM abundance

FIG. 2. The anticipated reach to millicharged dark mat-
ter in the qe↵ � m� plane for various experimental con-
figurations of our setup at 90% C.L., compared to exist-
ing constraints (shaded gray). In all cases, we assume a
year of integration time, a spatially-averaged field-strength
of hEdefi = 10 kV/cm, and ! = 100 kHz. The green line cor-
responds to the projected reach of a detector optimized for
detection of magnetic fields, such as the DM Radio experi-
ment [7]. The reach of dedicated LC resonators optimized for
detecting electric fields is also shown. The lines labelled “E-
field (I-III)” correspond to various deflector/shield volumes,
LC circuit temperatures, and quality factors as indicated in
the legend. Also shown are the direct detection sensitivities
of 1-year exposures for the near-term planned experiments
SENSEI (100 g) (purple) [8, 9] and SuperCDMS-G2 (1 kg)
(yellow) [1], assuming zero background. Longer-term R&D
on direct detection concepts with meV-scale energy thresh-
olds (such as detectors using superconductors [10], Dirac ma-
terials [11], or polar crystals [12, 13] as targets) could extend
direct detection sensitivity to keV-scale DM masses. Along
the solid blue line, the millicharge abundance from freeze-in
production in the early universe is in agreement with the ob-
served dark matter energy density.

consistent with observations for couplings of size

qe↵ ⇠
1

↵em

✓
me Teq

m� mPl

◆1/2

⇠ 10�10
⇥

⇣
m�

keV

⌘�1/2
, (3)

where me is the electron mass, mPl is the Planck mass,
and Teq ' 0.8 eV is the temperature at matter-radiation
equality [17]. In order to remain consistent with other
constraints, realizing this scenario for sub-MeV dark pho-
ton mediators requires mA0 . 10�9 eV [16, 17]. There-
fore, viable freeze-in models for sub-MeV DM lie firmly
in the millicharge-like regime for the class of experiments
we consider.1

1 It has been argued that millicharged DM may be evacuated from
the galactic disk by supernova shocks [18, 19] (but see, e.g.,

1) Millicharged DM charge separated using oscillating EM deflector cavity 

2) Deflected current readout in shielded LC circuit w/ magnetometer
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FIG. 1. Schematic of the experimental concept. Dark matter
passing through an oscillating electric field is deflected, setting
up propagating waves of alternating dark matter millicharge,
⇢�, and millicurrent, j�, densities. Dark matter waves flow
unimpeded through an electromagnetic shield, creating small
electromagnetic fields that can be measured with a resonant
LC circuit inductively coupled to a magnetometer (not de-
picted) inside the shielded detector region.

is shown in Fig. 2.

Millicharged and Millicharge-like Dark Matter. To il-
lustrate our idea, we consider the scenario in which DM,
denoted by �, couples to standard electromagnetism with
an e↵ective charge qe↵ ⌧ 1. This is often referred to as
“millicharged” DM, and in its simplest incarnation re-
quires no new particles beyond the DM itself. A natural
way for such e↵ective models to arise is when the DM is
charged under a hidden sector gauge boson A

0
µ (a “dark

photon”) that kinetically mixes with the SM photon [6],

L �
✏
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Fµ⌫ F

0µ⌫ +
1

2
m

2
A0 A

02
µ , (1)

where mA0 is the dark photon mass and the dimensionless
coupling, ✏ ⌧ 1, controls the strength of kinetic mixing.
DM coupled to a massless dark photon (mA0 = 0) induces
an e↵ective millicharge

qe↵ = ✏ e
0
/e , (2)

in addition to DM self-interactions controlled by e
0,

where e is the SM electric charge and e
0 is the dark

photon gauge coupling. For non-zero mA0 , DM interac-
tions with SM matter are millicharge-like over distance
scales . m

�1
A0 and exponentially screened at larger dis-

tances. We consider an experimental apparatus local-
ized to O(meter)-scale distances, for which mA0 = 0 and
mA0 . meter�1

⇠ 10�7 eV are qualitatively indistin-
guishable. We focus on the massless case for simplicity
and discuss finite-mass corrections in the Supplementary
Material.

Sensitivity to this range of mediator masses is well
matched to models of sub-MeV DM production in the
early universe. The primary benchmark model for
production of sub-MeV DM is the “freeze-in” [2] of
a DM abundance from the annihilations of thermal
electrons [14–16] (and a related reaction, plasmon de-
cay [17]). These reactions generate a DM abundance
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FIG. 2. The anticipated reach to millicharged dark mat-
ter in the qe↵ � m� plane for various experimental con-
figurations of our setup at 90% C.L., compared to exist-
ing constraints (shaded gray). In all cases, we assume a
year of integration time, a spatially-averaged field-strength
of hEdefi = 10 kV/cm, and ! = 100 kHz. The green line cor-
responds to the projected reach of a detector optimized for
detection of magnetic fields, such as the DM Radio experi-
ment [7]. The reach of dedicated LC resonators optimized for
detecting electric fields is also shown. The lines labelled “E-
field (I-III)” correspond to various deflector/shield volumes,
LC circuit temperatures, and quality factors as indicated in
the legend. Also shown are the direct detection sensitivities
of 1-year exposures for the near-term planned experiments
SENSEI (100 g) (purple) [8, 9] and SuperCDMS-G2 (1 kg)
(yellow) [1], assuming zero background. Longer-term R&D
on direct detection concepts with meV-scale energy thresh-
olds (such as detectors using superconductors [10], Dirac ma-
terials [11], or polar crystals [12, 13] as targets) could extend
direct detection sensitivity to keV-scale DM masses. Along
the solid blue line, the millicharge abundance from freeze-in
production in the early universe is in agreement with the ob-
served dark matter energy density.

consistent with observations for couplings of size

qe↵ ⇠
1

↵em

✓
me Teq

m� mPl

◆1/2

⇠ 10�10
⇥

⇣
m�

keV

⌘�1/2
, (3)

where me is the electron mass, mPl is the Planck mass,
and Teq ' 0.8 eV is the temperature at matter-radiation
equality [17]. In order to remain consistent with other
constraints, realizing this scenario for sub-MeV dark pho-
ton mediators requires mA0 . 10�9 eV [16, 17]. There-
fore, viable freeze-in models for sub-MeV DM lie firmly
in the millicharge-like regime for the class of experiments
we consider.1

1 It has been argued that millicharged DM may be evacuated from
the galactic disk by supernova shocks [18, 19] (but see, e.g.,
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Figure 6. Spin-independent (top row) and spin-dependent (bottom row) DM-nucleon scattering cross section sensitivity esti-
mates for Jupiters and brown dwarfs, for exoplanets in a local DM velocity (left column) or GC DM velocity (right column)
calculated in this work. The solid lines show cross sections assuming 100% of incoming DM is captured (Cmax), and the dotted
lines show cross sections for when 10% of DM is captured (0.1Cmax). Complementary constraints are also shown; Earth is
the limit on Earth DM-heat flow [42], DD is a collection of direct detection experiments [150–153], Xenon1T (CR) [154] and
Borexino (CR) [154] correspond to cosmic-ray boosted DM signals. For spin-dependent scattering, two di↵erent DD bounds
are shown; if the proton ap and neutron an couplings are equal, the light pink line would be filled, if the neutron coupling an

is zero, the magenta shaded region is the DD limit (the exoplanet limits are not a↵ected by this choice).

be all filled in as a constraint if a su�ciently cold Jupiter
or brown dwarf were measured. For instead discovery of
a DM-heating signal, the DM parameters would lie above
the dashed lines shown. As both these figures show 100%
and 10% values of the DM capture rate, in principle even
stronger sensitivity to DM cross sections can be reached
if an even smaller DM capture fraction can be probed.
However, given the JWST optimal sensitivity, about a
10% DM capture fraction is likely the smallest capture
fraction that can be probed in the near future.

Note that there is a ceiling for the cross sections above
which the DM does not drift fast enough into the planet’s
core [180]. However, even in the case of a dense brown
dwarf, and sub-GeV DM masses, we find that this ceiling
is of the order of �max ⇠ 10�25 cm2 (for the sub-GeV DM
mass range). Such cross section values are at the thresh-
old where a point-like DM description is barely valid, and
another physical description for DM must be used. Im-
portantly, brown dwarfs provide complementary sensitiv-
ity to parameter space that can be tested by CR boosted
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We present exoplanets as new targets to discover Dark Matter (DM), with advantages due to their
large expected abundance, low temperatures, and large sizes. Throughout the Milky Way, DM can
scatter, become captured, deposit annihilation energy, and increase the heat flow within exoplanets.
We estimate upcoming infrared telescope sensitivity to this scenario, finding actionable discovery
or exclusion searches. We find that DM with masses above about an MeV can be probed with
exoplanets, with DM-proton and DM-electron scattering cross sections down to about 10�37cm2,
stronger than existing limits by up to six orders of magnitude. Supporting evidence of a DM origin
can be identified through DM-induced exoplanet heating correlated with Galactic position, and
hence DM density. This also allows a potential tracer of DM overdensities. Our results provide
new motivation to measure the temperature of the billions of brown dwarfs, rogue planets, and gas
giants peppered throughout our Galaxy.

I. INTRODUCTION

Are we alone in the Universe? This question has driven
wide-reaching interest in discovering a planet like our
own. Regardless of whether or not we ever find alien
life, the scientific advances from finding and understand-
ing other planets will be enormous. From a particle
physics perspective, new celestial bodies provide a vast
playground to discover new physics.

Astrophysical systems have already been broadly used
to probe new physics, including investigating the e↵ects
of gravitationally captured Dark Matter (DM). This can
occur if DM scatters with the system, loses energy, and
becomes gravitationally bound. If there is su�cient grav-
itational force, deposited DM kinetic energy can notice-
ably increase the temperature of the system. Regard-
less of gravitational strength, DM annihilation can also
induce heating. This has been investigated in the con-
text of neutron stars and white dwarfs [1–39]. Alter-
natively, the DM-related heat flow in other moons and
planets has been considered, including Earth [40–42],
Uranus [43, 44], Neptune and Jupiter [44, 45], Mars [42],
Earth’s Luna [46, 47], Jupiter’s Ganymede [48], as well
as hot Jupiters [44].

We explore the potential to discover DM using exo-
planets – planets outside our solar system. We will use
the term “exoplanets” to refer to the broader class of all
extra-solar planets (including rogue planets), as well as
brown dwarfs, which exist at the planet-star boundary.
There are many advantages of using exoplanets to search
for DM over other celestial bodies. These include:

A rapidly accelerating research program: Un-
til 1992, we didn’t even know if exoplanets existed. Al-

⇤
Email: rleane@slac.stanford.edu; ORCID: 0000-0002-1287-8780

†
Email: smirnov.9@osu.edu; ORCID: 0000-0002-3082-0929

Figure 1. Mock temperature distribution of old example exo-
planets with 20� 50 Jupiter masses, as a function of distance
from the center of our Galaxy. Black dots are DM-heated ex-
oplanets, assuming a gNFW DM profile. The magenta trian-
gles are the same set of planets, without DM heating. JWST
is the estimated minimum telescope sensitivity (see text).

most all exoplanets we now know were only discovered
in the last decade, with the majority found in the last
five years [49]. The exoplanet program is clearly rapidly
growing. Telescopes such as the James Webb Space
Telescope (JWST), Transiting Exoplanets Survey Satel-
lite (TESS), the Vera C. Rubin Observatory (Rubin,
previously LSST), and the Nancy Grace Roman Space
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FIG. 1. Left panel: Transfer functions for the WDM (orange), IDM (blue), and FDM (magenta) models that are ruled
out by our analysis at 95% confidence, corresponding to mWDM = 6.5 keV, �0 = 8.8 ⇥ 10�29 cm2 (for DM particle mass
m� = 100 MeV), and m� = 2.9 ⇥ 10�21 eV, respectively. These constraints are marginalized over our MW satellite model and
the properties of the MW system. Middle panel: SHMF suppression relative to CDM for each ruled-out non-CDM model. The
vertical dashed line indicates the 95% confidence upper limit on the lowest-mass halo inferred to host MW satellite galaxies
[36]. Note that the IDM SHMF is assumed to be identical to the WDM SHMF in our analysis, and is o↵set slightly for visual
clarity. Right panel: Predicted MW satellite galaxy luminosity functions for each ruled-out non-CDM model compared to DES
and PS1 observations, evaluated at the best-fit MW satellite model parameters from Ref. [36]. The shaded band illustrates
the uncertainty of our WDM prediction due to the stochasticity of our galaxy-halo connection model and the limited number
of simulations used in our analysis; the size of this uncertainty is very similar to that in CDM and the other alternative DM
models shown. This panel is a simple one-dimensional representation of our MW satellite and DM model fit to the luminosity,
size, and spatial distribution of satellites in the DES and PS1 survey footprints. The comparison of our CDM model to data
is described in Ref. [36], and full posterior distributions for our non-CDM analyses are provided in Supplemental Material.

We implement SHMF suppression by multiplying the
detection probability of each mock satellite, which in-
cludes terms that model tidal disruption due to the MW
disk, the e�ciency of galaxy formation, and observa-
tional detectability, by a factor of fDM(M,✓DM), follow-
ing Refs. [22, 50]. This procedure assumes that the shape
of the observed radial satellite distribution (which our
model predicts reasonably well [36]) is unchanged in al-
ternative DM scenarios, which is consistent with results
from cosmological WDM simulations of MW-mass ha-
los [17, 51]. The validity of this assumption is less certain
for FDM, because dynamical friction operates di↵erently
for wavelike versus particle DM [52], although this results
in negligible di↵erences in disruption timescales for the
⇠ 108 M� subhalos that drive our constraints [30]. The
right panel in Fig. 1 shows the predicted satellite lumi-
nosity function for each non-CDM model under consid-
eration evaluated with model parameters that are ruled
out at 95% confidence.

Fitting procedure.—We fit predicted satellite popula-
tions to the observed satellite population from DES and
PS1 using the observational selection functions derived
in Ref. [33], assuming that satellite surface brightness is
distributed according to a Poisson point process in each
survey footprint [36, 53]. We use the Markov chain Monte
Carlo (MCMC) code EMCEE [54] to simultaneously fit for
seven parameters governing the galaxy-halo connection,
one parameter governing the impact of the MW disk on

subhalo disruption, and one parameter governing the im-
pact of the DM model in question, which we express as
a subhalo mass scale. In particular, our thermal relic
WDM constraint is derived by fitting for Mhm, and our
FDM limit is derived by fitting for a characteristic mass
scale M0. Further details on our fitting procedure are
provided in Supplemental Material.

Subhalo abundance is known to scale linearly with host
halo mass [49], and we assume that satellite luminosity
is a monotonic function of subhalo mass, modulo scatter
[36]. We therefore expect a higher-mass MW host halo
to yield weaker constraints on non-CDM models, because
observed satellites would inhabit correspondingly higher-
mass subhalos. The average virial mass of the host halos
in our two realistic MW-like simulations is 1.4⇥1012 M�,
which is consistent with the 95% confidence range for the
virial mass of the MW halo inferred from Gaia measure-
ments of satellite kinematics [55, 56]. To be conservative,
we account for the uncertainty in MW halo mass on our
DM constraints by assuming that the mass scale describ-
ing the suppression of the SHMF in each DM paradigm
is linearly related to the virial mass of the MW halo,
following the scaling for minimum halo mass derived in
Ref. [36]. In particular, we multiply the upper limit on
the characteristic mass scale in each of our non-CDM
fits by the ratio of the largest allowed MW halo mass
to the average host halo mass in our simulations. We
validate this procedure by fitting the observed satellite
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FIG. 1. Left panel: Transfer functions for the WDM (orange), IDM (blue), and FDM (magenta) models that are ruled
out by our analysis at 95% confidence, corresponding to mWDM = 6.5 keV, �0 = 8.8 ⇥ 10�29 cm2 (for DM particle mass
m� = 100 MeV), and m� = 2.9 ⇥ 10�21 eV, respectively. These constraints are marginalized over our MW satellite model and
the properties of the MW system. Middle panel: SHMF suppression relative to CDM for each ruled-out non-CDM model. The
vertical dashed line indicates the 95% confidence upper limit on the lowest-mass halo inferred to host MW satellite galaxies
[36]. Note that the IDM SHMF is assumed to be identical to the WDM SHMF in our analysis, and is o↵set slightly for visual
clarity. Right panel: Predicted MW satellite galaxy luminosity functions for each ruled-out non-CDM model compared to DES
and PS1 observations, evaluated at the best-fit MW satellite model parameters from Ref. [36]. The shaded band illustrates
the uncertainty of our WDM prediction due to the stochasticity of our galaxy-halo connection model and the limited number
of simulations used in our analysis; the size of this uncertainty is very similar to that in CDM and the other alternative DM
models shown. This panel is a simple one-dimensional representation of our MW satellite and DM model fit to the luminosity,
size, and spatial distribution of satellites in the DES and PS1 survey footprints. The comparison of our CDM model to data
is described in Ref. [36], and full posterior distributions for our non-CDM analyses are provided in Supplemental Material.

We implement SHMF suppression by multiplying the
detection probability of each mock satellite, which in-
cludes terms that model tidal disruption due to the MW
disk, the e�ciency of galaxy formation, and observa-
tional detectability, by a factor of fDM(M,✓DM), follow-
ing Refs. [22, 50]. This procedure assumes that the shape
of the observed radial satellite distribution (which our
model predicts reasonably well [36]) is unchanged in al-
ternative DM scenarios, which is consistent with results
from cosmological WDM simulations of MW-mass ha-
los [17, 51]. The validity of this assumption is less certain
for FDM, because dynamical friction operates di↵erently
for wavelike versus particle DM [52], although this results
in negligible di↵erences in disruption timescales for the
⇠ 108 M� subhalos that drive our constraints [30]. The
right panel in Fig. 1 shows the predicted satellite lumi-
nosity function for each non-CDM model under consid-
eration evaluated with model parameters that are ruled
out at 95% confidence.

Fitting procedure.—We fit predicted satellite popula-
tions to the observed satellite population from DES and
PS1 using the observational selection functions derived
in Ref. [33], assuming that satellite surface brightness is
distributed according to a Poisson point process in each
survey footprint [36, 53]. We use the Markov chain Monte
Carlo (MCMC) code EMCEE [54] to simultaneously fit for
seven parameters governing the galaxy-halo connection,
one parameter governing the impact of the MW disk on

subhalo disruption, and one parameter governing the im-
pact of the DM model in question, which we express as
a subhalo mass scale. In particular, our thermal relic
WDM constraint is derived by fitting for Mhm, and our
FDM limit is derived by fitting for a characteristic mass
scale M0. Further details on our fitting procedure are
provided in Supplemental Material.

Subhalo abundance is known to scale linearly with host
halo mass [49], and we assume that satellite luminosity
is a monotonic function of subhalo mass, modulo scatter
[36]. We therefore expect a higher-mass MW host halo
to yield weaker constraints on non-CDM models, because
observed satellites would inhabit correspondingly higher-
mass subhalos. The average virial mass of the host halos
in our two realistic MW-like simulations is 1.4⇥1012 M�,
which is consistent with the 95% confidence range for the
virial mass of the MW halo inferred from Gaia measure-
ments of satellite kinematics [55, 56]. To be conservative,
we account for the uncertainty in MW halo mass on our
DM constraints by assuming that the mass scale describ-
ing the suppression of the SHMF in each DM paradigm
is linearly related to the virial mass of the MW halo,
following the scaling for minimum halo mass derived in
Ref. [36]. In particular, we multiply the upper limit on
the characteristic mass scale in each of our non-CDM
fits by the ratio of the largest allowed MW halo mass
to the average host halo mass in our simulations. We
validate this procedure by fitting the observed satellite
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FIG. 2. Constraints on WDM and IDM models from our analysis of MW satellites observed with DES and PS1 (red) compared
to previous constraints from classical and SDSS satellites [19] (blue) and other experimental results. Left panel : Constraints
on the mass and mixing angle of resonantly-produced sterile neutrino DM. These constraints are derived by finding mass and
mixing angle combinations that suppress the linear matter power spectrum more strongly than the mWDM = 6.5 keV thermal
relic ruled out at 95% confidence by our analysis. The black point with error bars shows the sterile neutrino interpretation of
the 3.5 keV X-ray line [61]. The dark gray region is ruled out by dwarf galaxy internal dynamics [62], and the gray contour
shows X-ray constraints [63–65]. Solid black lines indicate regions of parameter space in which resonantly-produced sterile
neutrinos cannot constitute all of the DM in the Neutrino Minimal Standard Model [58, 66]. Right panel : Constraints on
the interaction cross section and DM mass for velocity-independent DM–proton scattering. Green contours show cosmological
limits from the CMB [20, 22] and the Lyman-↵ forest [67]. Light gray contours show experimental limits from the X-ray
Quantum Calorimeter [68] and direct detection results as interpreted by [69].

semi-analytic model in [28] with a function of the form,

fFDM(M,m�) =

"
1 +

✓
M0(m�)

M

◆�̃(m�)
#�̃(m�)

, (6)

where �̃(m�) and �̃(m�) are provided in the Supplemen-
tal Material. The characteristic subhalo mass scale M0

is related to the FDM mass via [70]

M0(m�) = 1.6 ⇥ 1010
⇣ m�

10�22 eV

⌘�4/3
M�. (7)

The SHMF suppression in Eq. (6) encapsulates the ef-
fects of tidal stripping on subhalos with solitonic cores,
which was explicitly included by [28]. This SHMF sup-
pression is significantly less severe than that estimated
from the FDM simulations in [70]. As described in the
Supplemental Material, using the SHMF from [70] in our
fit yields a limit on the FDM mass that is roughly three
times more stringent than our fiducial result. This con-
firms that the FDM SHMF is a key theoretical uncer-
tainty that must be addressed [27].

Fitting procedure. We implement the SHMF in Eq. (6)
in our fit to the MW satellite population to obtain a
marginalized posterior distribution over M0. In partic-
ular, we fit for log10(M0) using a uniform prior on this
logarithmic quantity, and we translate the resulting limit
to m� using Eq. (7). We note that our procedure for

constraining FDM uses the detailed shape of the SHMF
suppression in this model, rather than mapping the half-
mode scale of the FDM transfer function to that of ther-
mal relic WDM as in [19] or bounding the FDM SHMF
by ruled-out thermal relic WDM SHMFs as in [71]. This
is necessary because both the shape of the FDM trans-
fer function and the resulting suppression of the SHMF
di↵er in detail from thermal relic WDM (see Fig. 1).

Results.—Table I presents our constraints on the WDM,
IDM, and FDM paradigms. We describe these results
below and translate the limits into constraints on specific
models corresponding to each DM paradigm.

(i) WDM. Our fit using the thermal relic WDM SHMF
suppression from [13] yields Mhm < 3.0 ⇥ 107 M�, or
mWDM > 7.0 keV, at 95% confidence. Linear scaling with
MW halo mass yields our fiducial constraint of Mhm <
3.8 ⇥ 107 M�, corresponding to mWDM > 6.5 keV. This
translates to an upper limit on the free-streaming length
of �fs . 10 h�1 kpc, corresponding to the virial radii of
the smallest halos that host MW satellite galaxies, and
improves on previous mWDM constraints from the MW
satellite population by a factor of ⇠ 2 [19].

Our constraint on thermal relic WDM translates to
a lower limit of 50 keV on the mass of a non-resonant
Dodelson–Widrow sterile neutrino [53, 78]. We also
translate our thermal relic WDM limit into constraints on

Dark Sectors + Milky Way Satellites

DES Collaboration 2008.00022



Dark Sectors + Milky Way Satellites + BBN
3

10�5 10�4 10�3 10�2 10�1 100 101 102

dark matter mass m� [GeV]

10�50

10�46

10�42

10�38

10�34

10�30

10�26

10�22

cr
os

s
se

ct
io

n
�

0
[c

m
2 ]

Underground
Direct
Detection

XQC

(CR)

Ne�, mediator
(this work)

Ne�, DM
(this work)

re
al

sc
al

ar

co
m

pl
ex

sc
al

ar
,
M

aj
.

fe
rm

io
n

D
ir
.

fe
rm

io
n

SN1987A
(Dir. fermion)

Neutrino floor

Contact Interaction

MW Satellites
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and momentum-independent in the non-relativistic limit, the Ne↵ exclusion regions are valid with or without this assumption.
Above the dashed blue line labelled “Ne↵ , mediator”, �0 is so large that it requires a light  10MeV mediator as in Eq. (10)
whose presence also spoils BBN. The dashed (CR) contours are the CRUD regions from Refs. [4, 5], which assume a cross
section that is constant and equal for CR scattering and non-relativistic direct detection (see Secs. I and III for discussion).

the ECM given in Eq. (3). For temperatures below the
QCD phase transition, the interaction in Eq. (4) becomes

Lint ! G�N (�̄�µ�)(N̄�
µ
N), T ⌧ ⇤QCD, (5)

where G�N is the e↵ective coupling to the nucleons
N = n, p. This coupling satisfies G�N =

P
q G�q for a

sum over all valence quarks inside the nucleon. Although
we have chosen a vector Lorentz structure here for sim-
plicity, both CRUD and early universe DM annihilation
are relativistic processes, so our approach is without loss
of essential generality; the rates for other Lorentz struc-
tures will di↵er only by factors ⇠ O(1) in the relativistic
limit.

The accessible parameter space for CRUD is conven-
tionally presented in terms of the non-relativistic direct
detection cross-section �0, where

�0 ⌘
G

2
�Nµ

2
�N

⇡
, µ�N ⌘

m�mN

m� +mN
. (6)

We emphasize that this non-relativistic scattering cross
section is appropriate to use for the cold cosmological
dark matter at the CMB epoch and in the Milky Way

today, but it is not appropriate for describing the collision
of a relativistic cosmic ray with a much lighter � (nor for
the collision of the relativistic outgoing � with a direct
detection apparatus). Neglecting quark and DM masses,
the relativistic scattering cross-section (appropriate for
upscattering or for relativistic direct detection) and the
q̄q $ �̄� annihilation cross section are, respectively,

�R(s) =
s

6

�0

µ
2
�N

, �ann(s) =
s

12

�0

µ
2
�N

, (7)

where s = E
2
CM is the Mandelstam variable and G

�1
�q �s

is true in the contact-interaction regime by assumption.
Given this discussion it is clear that, even for a contact-
interaction Lagrangian, the cross section does not equal
the same constant for non-relativistic direct detection
and relativistic CR-DM scattering as assumed in [3–5].
Since CRUD requires a DM interaction with light

quarks, we conservatively ask: was the DM in chemical
equilibrium with the SM at T ⇠ ⇤QCD when the universe
contained thermal densities of quarks and anti-quarks?
The order of magnitude criterion for thermalization is
that the thermally averaged quark-antiquark annihila-

GK, McDermott 1908.00007

For a contact interaction, DM is chemical equilibrium during BBN
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Could we ever detect it using gravity alone?

}
“zeptonewton”

This sounds totally nuts, right?



Zeptonewton force sensing with nanospheres in an optical lattice
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Optically trapped nanospheres in high-vaccum experience little friction and hence are promising
for ultra-sensitive force detection. Here we demonstrate measurement times exceeding 105 seconds
and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice.
The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by
over an order of magnitude, and enables a variety of applications including electric field sensing,
inertial sensing, and gravimetry. The particle is confined at the anti-nodes of the optical standing
wave, and by studying the motion of a particle which has been moved to an adjacent trapping site,
the known spacing of the anti-nodes can be used to calibrate the displacement spectrum of the
particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity
and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.

PACS numbers: 42.50.Wk,07.10.Cm,07.10.Pz

Sub-attonewton force sensing facilitates a variety of ap-
plications including magnetic resonance force microscopy
[1], tests of gravitational physics at short range [2, 3],
investigations of surface forces including the Casimir
e↵ect [4], as well as inertial sensing [5]. State-of-
the-art resonant solid state mechanical sensors such as
micro-cantilevers, nano-membranes, and nanotubes typ-
ically operate in a cryogenic environment to improve
their thermal-noise limited force sensitivity. Room-
temperature solid-state sensors have achieved sensitivity
in the ⇠ 10�100 aN/Hz1/2 range [6–10], while cryogenic
nanotube mechanical oscillators have recently achieved
⇠ 10 zN/Hz1/2 [11]. The excellent environmental de-
coupling of optically levitated mechanical systems [12–
17, 19] in high vacuum can allow such systems to achieve
similar or better force sensitivity at room temperature
[17, 18, 20]. However, a challenge has been the optical
confinement of such particles under high vacuum [18, 21–
23], in particular in standing-wave optical traps [16, 24].

In this paper we describe robust optical trapping of
300 nm silica nanospheres in an optical lattice at high
vacuum, where particles can be trapped indefinitely over
several days. The optical potential allows the particle to
be confined in a number of possible trapping sites. By
perturbing the system with a laser, we are able to trans-
fer the particle between di↵erent trap anti-nodes, which
shows promise for sensing experiments where the particle
position must be adjusted and controlled precisely [3]. By
studying the motion of a particle which has been moved
to an adjacent trapping site, the known spacing of the
lattice anti-nodes can also serve as a ruler to calibrate
the displacement spectrum of the particle. While elec-
tric fields can be used to calibrate the force sensitivity of
charged microspheres [23, 25], the standing wave method
can be a useful calibration tool for neutral objects, which
are applicable for a variety of experiments where charge
can produce unwanted backgrounds. We find that for
a charged particle the standing-wave method produces

results consistent with the electric field method.

Using active-feedback laser cooling in three dimen-
sions, we demonstrate cooling of the center of mass mo-
tion to ⇠ 400 mK at a pressure of 5⇥10�6 Torr, resulting
in a force sensitivity of 1.6 aN/Hz1/2. The system per-
mits time-averaged measurements over long integration
times, and we demonstrate force sensing at the 6 zN level.
Due to the reduced particle size and improved imaging
and feedback cooling, these results are more than two
orders of magnitude more sensitive that those previously
reported by our group using 3 µm particles in a dual-
beam optical dipole trap [23].

Finally, we study the dependence of the trap stability
and lifetime on laser intensity and background gas pres-
sure, and measure the heating rate of the particle in high
vacuum in the absence of optical feedback cooling. We
find stable trapping for a range of intensities that are lim-
ited by the trapping depth on one hand and the internal
heating of the particle on the other.

In addition to force sensing applications, stable op-
tically trapped nanospheres at high vacuum are also
promising for quantum information science [12, 13],
tests of classical and quantum thermodynamics [22],
testing quantum superpositions [26–28], quantum opto-
mechanics with hybrid systems [29], matter wave inter-
ferometers [30–34], and gravitational wave detection [35].

Experimental Setup. A schematic of the experimental
setup is shown in Fig. 1. A 300 nm fused silica sphere
is trapped using two equal-power counter-propagating
beams formed by splitting a 1064 nm laser beam with
a polarizing cube beam splitter. The beam foci are o↵set
axially by 75 µm. The trap is initially operated with a
total power of 2.2 W and a waist size of approximately
8 µm, and the trap is loaded by vibrating a glass sub-
strate to aerosolize beads under 5 � 10 Torr of N2 gas,
which provides su�cient damping to slow and capture
the particles. More detail of the vacuum system has been
previously described in Ref. [23].
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cooling, the temperature in Eq. 1 becomes Te↵ and the
damping rate �e↵ includes the e↵ect of the cooling laser.

We perform force measurements in the x�direction.
Data for the bead position and a reference signal (typi-
cally at 9 kHz) are recorded with a sampling rate of 125
kHz. Fig. 2 shows a typical displacement spectral den-
sity in the x�direction of a bead held at low vacuum of
2 Torr with no feedback cooling applied, and a spectrum
at high vacuum (HV) of 5 ⇥ 10�6 Torr with feedback
cooling. At 2 Torr we observe an x-resonant frequency
of 2830 Hz and gas damping rate of approximately 1.4
kHz. In the orthogonal directions (y�, z�) (not shown)
resonance frequencies of (3410, 7300) Hz are observed, re-
spectively. At HV, a Lorentzian fit to the data reveals
cooling of the center of mass motion to 460 ± 60 mK,
with a damping rate of 460 ± 49 Hz in the x� direc-
tion. CM motion in the y� and z� directions are cooled
to temperatures of 610 ± 190 mK and 7.9 ± 3 K, with
damping rates of approximately 1.3 kHz and 1 kHz, re-
spectively. The frequencies of the peaks are shifted when
feedback cooling is applied due to the optical spring ef-
fect that occurs if the feedback phase is not precisely 90
degrees. The force sensitivity in the x�direction corre-

sponds to S1/2
F,x = 1.63 ± 0.37 aN/Hz1/2, with the error

dominated by the uncertainty in the particle size. The
lowest attainable temperature appears to be limited by
noise in the QPD imaging electronics and trapping laser.
The expected sensitivity at this pressure would be ap-
proximately ⇠ 10 times better in the absence of laser
noise and cross-talk between feedback channels.

In the absence of an applied force, we expect the signal
due to thermal noise to average down as b1/2. This be-
havior is shown in Fig. 2 for averaging times exceeding
105 seconds. Force sensing at the level of 5.8± 1.3 zN is
achievable at this timescale. Also shown is the calculated
Fmin using the measured parameters for Te↵ , !0, and �e↵ ,
which agree with measured data within uncertainty. We
find that approximately 90% of the beads trapped have
zero electric charge; the remaining beads tend to have
only 1 or 2 excess electrons. Data are shown for charged
(1e�, 2e�) and uncharged beads in Fig. 2 for a known
applied electric field. The expected force for a charge of
1 (2) electrons is shown as a dotted line in Fig. 2. An in-
dependent calibration can be achieved by comparing the
spectra of the beads after they have been transported to
adjacent trapping sites in the optical lattice, as discussed
previously. The determined calibration factors are con-
sistent in each case within experimental uncertainty.

IV. TRAP STABILITY AND LIFETIME

In the absence of applied feedback cooling, the particle
is lost from the trap as the pressure is dropped below the
10 mTorr range. Fig. 3a illustrates statistics for the typ-
ical trap loss pressure for beads without feedback cooling
applied, as a function of trapping laser intensity, along
with previous data obtained for 3 µm diameter beads [23].

FIG. 2: (Color Online) Measured force on a bead as a func-
tion of averaging time at 2 Torr and 5 ⇥ 10�6 Torr (HV)
for charged and uncharged beads, while driving with a sinu-
soidally varying electric field of 1 kV/m. (inset) Measured
x� displacement spectrum of a 300 nm sphere at 2 Torr and
HV with feedback cooling applied. Lorentzian fits indicate
cooling to 460 mK at HV.

Following a similar analysis to that presented in Ref. [23],
we find that radiometric forces may also be a likely loss
mechanism for the smaller beads. The expected temper-
ature gradient across the sphere is significantly reduced
for the 300 nm sphere however, consistent with the lower
loss pressures. Once HV is attained, we can reduce the
optical feedback cooling rate by over an order of magni-
tude compared with what is used while pumping from 2
Torr to HV, and maintain the trap stability. This sug-
gests that gas collisions play a role in the loss mechanism
around ⇠ 10 mTorr. While larger beads tend to be lost
at higher pressures for increasing intensity, the 300 nm
beads tend to get lost at higher pressures for decreasing
intensity. This di↵erence may be due to the reduced trap
depth for the smaller particles.
The trap lifetime at high vacuum at intensities around

1010 W/m2 is typically indefinite over several days, how-
ever at higher intensity we notice an exponential reduc-
tion of lifetime with increasing laser power, as shown in
Fig. 3c. The estimated timescale to reach thermal equi-
librium in each case is less than 1 s, as shown in Fig. 3d,
despite lifetimes ranging from minutes to a few hours.
Here we consider a range of possible values for the imag-
inary permittivity ✏2, varying from the bulk silica value
✏2 = 2.5⇥ 10�7 [36] up to ✏2 = 10�6, an upper bound we
infer from holding particles for several seconds at inten-
sities above 2⇥ 1010 W/m2 without particle evaporation
or loss. The exact loss mechanism shown in Fig. 3c is
uncertain. A process whereby the particle may undergo
annealing or a glass-crystalline transition after remaining
at an elevated temperature for a significant time could be
responsible for loss if the new phase has higher absorp-
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FIG. 1: (Color Online) (a) A standing-wave trap for 300
nm beads is formed using counter-propagating 1064 nm laser
beams focused at nearly the same spatial location. Active
feedback cooling is performed using 780 nm lasers (shown as
green) in 3 dimensions. (b) Calculated optical force along
the z�axis assuming total power of 2.2 W, waist of 8 µm,
and a 0.2% intensity modulation due to interference from the
counter-propagating beam, corresponding well with the mea-
sured trap frequencies. (c) Time-trace for 1 s of particle mo-
tion in the axial direction at P = 2 Torr. When subject to
an applied sinusoidal optical force, the particle hops to an
adjacent trapping site as a result of the perturbation. Dotted
lines indicate expected antinode spacing.

loaded by vibrating a glass substrate to aerosolize beads
under 5 � 10 Torr of N2 gas, which provides su�cient
damping to slow and capture the particles. More detail
of the vacuum system has been previously described in
Ref. [23].

The polarizing cube beam splitter transmits approxi-
mately 1.5 percent of the p-polarized laser power along
the s-beam path due to imperfect polarization separa-
tion. This p-polarized component can interfere with the
anti-parallel p-polarized beam to create a standing wave
potential, as illustrated in Fig. 1b. The optical poten-
tial results from the superposition of the scattering and
dipole forces from the beams and includes a modulation
produced by the interference. The intensity modulation
depends on the coherence length of the laser as well as
the purity of the beam polarizations.

The position of the nanosphere is measured by imaging
the scattered light from the nanosphere onto two quad-
rant photodetectors (QPDs). We define the “axial” or z�
axis in the direction of the dipole trap beams, and the
“horizontal” or x� axis is perpendicular to both the ver-

tical and axial axes. The axial-horizontal (vertical) mo-
tion is measured using QPD 1 (2). The position signals
from the QPDs are phase shifted by 90 degrees to provide
a signal proportional to the bead’s instantaneous veloc-
ity using either a derivative or phase shifter circuit. The
phase shifted signals are used to adjust the RF ampli-
tude of three acoustic optical modulators (AOMs), which
modulate the intensity of a 780 nm laser beam to provide
a velocity-dependent optical damping force in each direc-
tion. Such feedback has proven necessary for maintaining
the particle in the trap while pumping to high-vacuum.
The feedback light is focused onto the sphere using a lens
outside of the vacuum chamber in the horizontal direc-
tion, one of the dipole trap lenses for the axial direction,
and an in-vacuum lens for the vertical direction.
Prior to pumping to high vacuum, the center-of-mass

temperature as derived from the position spectrum of the
beads is largely independent of pressure and trap laser
power for su�ciently high pressure and su�ciently low
laser intensity. We can thus assume the bead is in ther-
mal equilibrium with the background gas at and above
2 Torr. This allows us to determine a scale factor to
convert the quadrant photodetector voltage into a dis-
placement. From this conversion factor we can deduce
the force sensitivity of the bead at lower vacuum con-
ditions. As a check of the scale factor, the bead can be
transferred between adjacent trapping sites by applying a
perturbation with a laser. In this case we utilize the feed-
back cooling laser in a driving mode. In Fig. 1c we show
the time trace of a bead subject to a perturbation which
causes it to transition between adjacent trapping sites.
A calibration is made possible using the half-wavelength
spacing of the trap antinodes, along the axial direction
of the trap. From the fit to thermal spectra, the mea-
sured displacement of this transition is 514 ± 43 nm, in
reasonable agreement with the expected value of 532 nm.

III. FORCE MEASUREMENT

At high vacuum, time-averaged sub-aN force measure-
ments can be performed. The minimum force detectable
for a harmonic oscillator in thermal equilibrium with a
bath at temperature T is

Fmin = S1/2
F b1/2 =

s
4kBTbk

!0Q
(1)

where b is the measurement bandwidth, S1/2
F is the

thermal-noise force spectral density , k is the spring con-
stant of the oscillator, kB is Boltzmann’s constant, w0

is the resonance frequency, and Q is the quality fac-
tor. In the absence of laser cooling, Eq. 1 can be writ-
ten for a nanosphere as Fmin =

p
4kBTm�Mb where

�M = 16P/(⇡⇢vr) is the damping coe�cient of the sur-
rounding gas, v is the mean speed of the gas, m is the
mass of the sphere, ⇢ is its density, r is its radius, and P
is the pressure. For a sphere cooled with laser feedback
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and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.
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I. INTRODUCTION

Sub-attonewton force sensing facilitates a variety of ap-
plications including magnetic resonance force microscopy
[1], tests of gravitational physics at short range [2, 3],
investigations of surface forces including the Casimir
e↵ect [4], as well as inertial sensing [5]. State-of-
the-art resonant solid state mechanical sensors such as
micro-cantilevers, nano-membranes, and nanotubes typ-
ically operate in a cryogenic environment to improve
their thermal-noise limited force sensitivity. Room-
temperature solid-state sensors have achieved sensitivity
in the ⇠ 10�100 aN/Hz1/2 range [6–10], while cryogenic
nanotube mechanical oscillators have recently achieved
⇠ 10 zN/Hz1/2 [11]. The excellent environmental de-
coupling of optically levitated mechanical systems [12–
17, 19] in high vacuum can allow such systems to achieve
similar or better force sensitivity at room temperature
[17, 18, 20]. However, a challenge has been the optical
confinement of such particles under high vacuum [18, 21–
23], in particular in standing-wave optical traps [16, 24].

In this paper we describe robust optical trapping of
300 nm silica nanospheres in an optical lattice at high
vacuum, where particles can be trapped indefinitely over
several days. The optical potential allows the particle to
be confined in a number of possible trapping sites. By
perturbing the system with a laser, we are able to trans-
fer the particle between di↵erent trap anti-nodes, which
shows promise for sensing experiments where the particle
position must be adjusted and controlled precisely [3]. By
studying the motion of a particle which has been moved
to an adjacent trapping site, the known spacing of the
lattice anti-nodes can also serve as a ruler to calibrate
the displacement spectrum of the particle. While elec-
tric fields can be used to calibrate the force sensitivity of
charged microspheres [23, 25], the standing wave method

⇤ageraci@unr.edu

can be a useful calibration tool for neutral objects, which
are applicable for a variety of experiments where charge
can produce unwanted backgrounds. We find that for
a charged particle the standing-wave method produces
results consistent with the electric field method.
Using active-feedback laser cooling in three dimen-

sions, we demonstrate cooling of the center of mass mo-
tion to ⇠ 400 mK at a pressure of 5⇥10�6 Torr, resulting
in a force sensitivity of 1.6 aN/Hz1/2. The system per-
mits time-averaged measurements over long integration
times, and we demonstrate force sensing at the 6 zN level.
Due to the reduced particle size and improved imaging
and feedback cooling, these results are more than two
orders of magnitude more sensitive that those previously
reported by our group using 3 µm particles in a dual-
beam optical dipole trap [23].
Finally, we study the dependence of the trap stability

and lifetime on laser intensity and background gas pres-
sure, and measure the heating rate of the particle in high
vacuum in the absence of optical feedback cooling. We
find stable trapping for a range of intensities that are lim-
ited by the trapping depth on one hand and the internal
heating of the particle on the other.
In addition to force sensing applications, stable op-

tically trapped nanospheres at high vacuum are also
promising for quantum information science [12, 13],
tests of classical and quantum thermodynamics [22],
testing quantum superpositions [26–28], quantum opto-
mechanics with hybrid systems [29], matter wave inter-
ferometers [30–34], and gravitational wave detection [35].

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig.
1. A 300 nm fused silica sphere is trapped using two
equal-power counter-propagating beams formed by split-
ting a 1064 nm laser beam with a polarizing cube beam
splitter. The beam foci are o↵set axially by 75 µm. The
trap is initially operated with a total power of 2.2 W
and a waist size of approximately 8 µm, and the trap is
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cooling, the temperature in Eq. 1 becomes Te↵ and the
damping rate �e↵ includes the e↵ect of the cooling laser.

We perform force measurements in the x�direction.
Data for the bead position and a reference signal (typi-
cally at 9 kHz) are recorded with a sampling rate of 125
kHz. Fig. 2 shows a typical displacement spectral den-
sity in the x�direction of a bead held at low vacuum of
2 Torr with no feedback cooling applied, and a spectrum
at high vacuum (HV) of 5 ⇥ 10�6 Torr with feedback
cooling. At 2 Torr we observe an x-resonant frequency
of 2830 Hz and gas damping rate of approximately 1.4
kHz. In the orthogonal directions (y�, z�) (not shown)
resonance frequencies of (3410, 7300) Hz are observed, re-
spectively. At HV, a Lorentzian fit to the data reveals
cooling of the center of mass motion to 460 ± 60 mK,
with a damping rate of 460 ± 49 Hz in the x� direc-
tion. CM motion in the y� and z� directions are cooled
to temperatures of 610 ± 190 mK and 7.9 ± 3 K, with
damping rates of approximately 1.3 kHz and 1 kHz, re-
spectively. The frequencies of the peaks are shifted when
feedback cooling is applied due to the optical spring ef-
fect that occurs if the feedback phase is not precisely 90
degrees. The force sensitivity in the x�direction corre-

sponds to S1/2
F,x = 1.63 ± 0.37 aN/Hz1/2, with the error

dominated by the uncertainty in the particle size. The
lowest attainable temperature appears to be limited by
noise in the QPD imaging electronics and trapping laser.
The expected sensitivity at this pressure would be ap-
proximately ⇠ 10 times better in the absence of laser
noise and cross-talk between feedback channels.

In the absence of an applied force, we expect the signal
due to thermal noise to average down as b1/2. This be-
havior is shown in Fig. 2 for averaging times exceeding
105 seconds. Force sensing at the level of 5.8± 1.3 zN is
achievable at this timescale. Also shown is the calculated
Fmin using the measured parameters for Te↵ , !0, and �e↵ ,
which agree with measured data within uncertainty. We
find that approximately 90% of the beads trapped have
zero electric charge; the remaining beads tend to have
only 1 or 2 excess electrons. Data are shown for charged
(1e�, 2e�) and uncharged beads in Fig. 2 for a known
applied electric field. The expected force for a charge of
1 (2) electrons is shown as a dotted line in Fig. 2. An in-
dependent calibration can be achieved by comparing the
spectra of the beads after they have been transported to
adjacent trapping sites in the optical lattice, as discussed
previously. The determined calibration factors are con-
sistent in each case within experimental uncertainty.

IV. TRAP STABILITY AND LIFETIME

In the absence of applied feedback cooling, the particle
is lost from the trap as the pressure is dropped below the
10 mTorr range. Fig. 3a illustrates statistics for the typ-
ical trap loss pressure for beads without feedback cooling
applied, as a function of trapping laser intensity, along
with previous data obtained for 3 µm diameter beads [23].

FIG. 2: (Color Online) Measured force on a bead as a func-
tion of averaging time at 2 Torr and 5 ⇥ 10�6 Torr (HV)
for charged and uncharged beads, while driving with a sinu-
soidally varying electric field of 1 kV/m. (inset) Measured
x� displacement spectrum of a 300 nm sphere at 2 Torr and
HV with feedback cooling applied. Lorentzian fits indicate
cooling to 460 mK at HV.

Following a similar analysis to that presented in Ref. [23],
we find that radiometric forces may also be a likely loss
mechanism for the smaller beads. The expected temper-
ature gradient across the sphere is significantly reduced
for the 300 nm sphere however, consistent with the lower
loss pressures. Once HV is attained, we can reduce the
optical feedback cooling rate by over an order of magni-
tude compared with what is used while pumping from 2
Torr to HV, and maintain the trap stability. This sug-
gests that gas collisions play a role in the loss mechanism
around ⇠ 10 mTorr. While larger beads tend to be lost
at higher pressures for increasing intensity, the 300 nm
beads tend to get lost at higher pressures for decreasing
intensity. This di↵erence may be due to the reduced trap
depth for the smaller particles.
The trap lifetime at high vacuum at intensities around

1010 W/m2 is typically indefinite over several days, how-
ever at higher intensity we notice an exponential reduc-
tion of lifetime with increasing laser power, as shown in
Fig. 3c. The estimated timescale to reach thermal equi-
librium in each case is less than 1 s, as shown in Fig. 3d,
despite lifetimes ranging from minutes to a few hours.
Here we consider a range of possible values for the imag-
inary permittivity ✏2, varying from the bulk silica value
✏2 = 2.5⇥ 10�7 [36] up to ✏2 = 10�6, an upper bound we
infer from holding particles for several seconds at inten-
sities above 2⇥ 1010 W/m2 without particle evaporation
or loss. The exact loss mechanism shown in Fig. 3c is
uncertain. A process whereby the particle may undergo
annealing or a glass-crystalline transition after remaining
at an elevated temperature for a significant time could be
responsible for loss if the new phase has higher absorp-
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FIG. 1: (Color Online) (a) A standing-wave trap for 300
nm beads is formed using counter-propagating 1064 nm laser
beams focused at nearly the same spatial location. Active
feedback cooling is performed using 780 nm lasers (shown as
green) in 3 dimensions. (b) Calculated optical force along
the z�axis assuming total power of 2.2 W, waist of 8 µm,
and a 0.2% intensity modulation due to interference from the
counter-propagating beam, corresponding well with the mea-
sured trap frequencies. (c) Time-trace for 1 s of particle mo-
tion in the axial direction at P = 2 Torr. When subject to
an applied sinusoidal optical force, the particle hops to an
adjacent trapping site as a result of the perturbation. Dotted
lines indicate expected antinode spacing.

loaded by vibrating a glass substrate to aerosolize beads
under 5 � 10 Torr of N2 gas, which provides su�cient
damping to slow and capture the particles. More detail
of the vacuum system has been previously described in
Ref. [23].

The polarizing cube beam splitter transmits approxi-
mately 1.5 percent of the p-polarized laser power along
the s-beam path due to imperfect polarization separa-
tion. This p-polarized component can interfere with the
anti-parallel p-polarized beam to create a standing wave
potential, as illustrated in Fig. 1b. The optical poten-
tial results from the superposition of the scattering and
dipole forces from the beams and includes a modulation
produced by the interference. The intensity modulation
depends on the coherence length of the laser as well as
the purity of the beam polarizations.

The position of the nanosphere is measured by imaging
the scattered light from the nanosphere onto two quad-
rant photodetectors (QPDs). We define the “axial” or z�
axis in the direction of the dipole trap beams, and the
“horizontal” or x� axis is perpendicular to both the ver-

tical and axial axes. The axial-horizontal (vertical) mo-
tion is measured using QPD 1 (2). The position signals
from the QPDs are phase shifted by 90 degrees to provide
a signal proportional to the bead’s instantaneous veloc-
ity using either a derivative or phase shifter circuit. The
phase shifted signals are used to adjust the RF ampli-
tude of three acoustic optical modulators (AOMs), which
modulate the intensity of a 780 nm laser beam to provide
a velocity-dependent optical damping force in each direc-
tion. Such feedback has proven necessary for maintaining
the particle in the trap while pumping to high-vacuum.
The feedback light is focused onto the sphere using a lens
outside of the vacuum chamber in the horizontal direc-
tion, one of the dipole trap lenses for the axial direction,
and an in-vacuum lens for the vertical direction.
Prior to pumping to high vacuum, the center-of-mass

temperature as derived from the position spectrum of the
beads is largely independent of pressure and trap laser
power for su�ciently high pressure and su�ciently low
laser intensity. We can thus assume the bead is in ther-
mal equilibrium with the background gas at and above
2 Torr. This allows us to determine a scale factor to
convert the quadrant photodetector voltage into a dis-
placement. From this conversion factor we can deduce
the force sensitivity of the bead at lower vacuum con-
ditions. As a check of the scale factor, the bead can be
transferred between adjacent trapping sites by applying a
perturbation with a laser. In this case we utilize the feed-
back cooling laser in a driving mode. In Fig. 1c we show
the time trace of a bead subject to a perturbation which
causes it to transition between adjacent trapping sites.
A calibration is made possible using the half-wavelength
spacing of the trap antinodes, along the axial direction
of the trap. From the fit to thermal spectra, the mea-
sured displacement of this transition is 514 ± 43 nm, in
reasonable agreement with the expected value of 532 nm.

III. FORCE MEASUREMENT

At high vacuum, time-averaged sub-aN force measure-
ments can be performed. The minimum force detectable
for a harmonic oscillator in thermal equilibrium with a
bath at temperature T is

Fmin = S1/2
F b1/2 =

s
4kBTbk

!0Q
(1)

where b is the measurement bandwidth, S1/2
F is the

thermal-noise force spectral density , k is the spring con-
stant of the oscillator, kB is Boltzmann’s constant, w0

is the resonance frequency, and Q is the quality fac-
tor. In the absence of laser cooling, Eq. 1 can be writ-
ten for a nanosphere as Fmin =

p
4kBTm�Mb where

�M = 16P/(⇡⇢vr) is the damping coe�cient of the sur-
rounding gas, v is the mean speed of the gas, m is the
mass of the sphere, ⇢ is its density, r is its radius, and P
is the pressure. For a sphere cooled with laser feedback
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Optically trapped nanospheres in high-vacuum experience little friction and hence are promising
for ultra-sensitive force detection. Here we demonstrate measurement times exceeding 105 seconds
and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice.
The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by
over an order of magnitude, and enables a variety of applications including electric field sensing,
inertial sensing, and gravimetry. The particle is confined at the anti-nodes of the optical standing
wave, and by studying the motion of a particle which has been moved to an adjacent trapping site,
the known spacing of the anti-nodes can be used to calibrate the displacement spectrum of the
particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity
and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.
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I. INTRODUCTION

Sub-attonewton force sensing facilitates a variety of ap-
plications including magnetic resonance force microscopy
[1], tests of gravitational physics at short range [2, 3],
investigations of surface forces including the Casimir
e↵ect [4], as well as inertial sensing [5]. State-of-
the-art resonant solid state mechanical sensors such as
micro-cantilevers, nano-membranes, and nanotubes typ-
ically operate in a cryogenic environment to improve
their thermal-noise limited force sensitivity. Room-
temperature solid-state sensors have achieved sensitivity
in the ⇠ 10�100 aN/Hz1/2 range [6–10], while cryogenic
nanotube mechanical oscillators have recently achieved
⇠ 10 zN/Hz1/2 [11]. The excellent environmental de-
coupling of optically levitated mechanical systems [12–
17, 19] in high vacuum can allow such systems to achieve
similar or better force sensitivity at room temperature
[17, 18, 20]. However, a challenge has been the optical
confinement of such particles under high vacuum [18, 21–
23], in particular in standing-wave optical traps [16, 24].

In this paper we describe robust optical trapping of
300 nm silica nanospheres in an optical lattice at high
vacuum, where particles can be trapped indefinitely over
several days. The optical potential allows the particle to
be confined in a number of possible trapping sites. By
perturbing the system with a laser, we are able to trans-
fer the particle between di↵erent trap anti-nodes, which
shows promise for sensing experiments where the particle
position must be adjusted and controlled precisely [3]. By
studying the motion of a particle which has been moved
to an adjacent trapping site, the known spacing of the
lattice anti-nodes can also serve as a ruler to calibrate
the displacement spectrum of the particle. While elec-
tric fields can be used to calibrate the force sensitivity of
charged microspheres [23, 25], the standing wave method

⇤ageraci@unr.edu

can be a useful calibration tool for neutral objects, which
are applicable for a variety of experiments where charge
can produce unwanted backgrounds. We find that for
a charged particle the standing-wave method produces
results consistent with the electric field method.
Using active-feedback laser cooling in three dimen-

sions, we demonstrate cooling of the center of mass mo-
tion to ⇠ 400 mK at a pressure of 5⇥10�6 Torr, resulting
in a force sensitivity of 1.6 aN/Hz1/2. The system per-
mits time-averaged measurements over long integration
times, and we demonstrate force sensing at the 6 zN level.
Due to the reduced particle size and improved imaging
and feedback cooling, these results are more than two
orders of magnitude more sensitive that those previously
reported by our group using 3 µm particles in a dual-
beam optical dipole trap [23].
Finally, we study the dependence of the trap stability

and lifetime on laser intensity and background gas pres-
sure, and measure the heating rate of the particle in high
vacuum in the absence of optical feedback cooling. We
find stable trapping for a range of intensities that are lim-
ited by the trapping depth on one hand and the internal
heating of the particle on the other.
In addition to force sensing applications, stable op-

tically trapped nanospheres at high vacuum are also
promising for quantum information science [12, 13],
tests of classical and quantum thermodynamics [22],
testing quantum superpositions [26–28], quantum opto-
mechanics with hybrid systems [29], matter wave inter-
ferometers [30–34], and gravitational wave detection [35].

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig.
1. A 300 nm fused silica sphere is trapped using two
equal-power counter-propagating beams formed by split-
ting a 1064 nm laser beam with a polarizing cube beam
splitter. The beam foci are o↵set axially by 75 µm. The
trap is initially operated with a total power of 2.2 W
and a waist size of approximately 8 µm, and the trap is
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FIG. 2. Estimated detected event rate, cut o↵ by demanding 5� SNR, with various detector configurations. Here we use the
same fiducial parameters as in (6),(7): helium background gas at pressure 10�10 Pa, resonator damping rates � = 10�6 Hz,
with 109 sensors. Blue curves represent arrays of milligram-scale detectors spaced at either 1 mm or 1 cm, while red curves
represent arrays of gram-scale detectors at either 1 cm or 10 cm spacing. The dotted lines represent how our sensitivity floor
varies as a function of detector temperature. The left column shows detectors arrayed in a cubical lattice as pictured in figure
1. The right column shows detectors in a planar array, one detector thick.
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composite state, primordial black hole, or an extended object (e.g a topological defect).
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for freely-falling detectors. Here for simplicity we as-
sumed a cubical array of side length L (so that the
number of sensors nearest the DM path is N ⇠ L/d)
with L = 1 m, and assumed dilution fridge temper-
atures T = 10 mK, helium ion-pump vacuum pres-
sures P = 10�10 Pa, ma = 4 u, mechanical damping
� = 10�6 Hz, and typical solid density ⇢solid ⇠ 10 g/cm3

for the detectors.

The signal-to-noise ratios (6), (7) represent our fun-
damental detection sensitivities. A DM candidate of
mass m� passing through a detector will be detected
with 5�� confidence if the detector parameters are such
that SNR � 5. Clearly, detecting a heavier DM candi-
date is easier. On the other hand, the number density of
DM at high mass is low. The observed local DM density
⇢� ⇡ 0.3 GeV / cm3 [43] means that, for a detector array
of total cross-section A, the rate of DM passing through
the array is

R =
⇢vA

m�

⇠ 50

year

✓
mPl

m�

◆✓
A

102 m2

◆
. (8)

In figure 2, we plot our predicted event rates with a va-
riety of detector geometries. These results suggest that
it would be straightforward to detect DM with masses
around the Planck mass, using an array of 106 � 109

detectors in a meter-scale apparatus. Reaching heavier
masses can be achieved with a sparse, larger array of
detectors; reaching smaller masses is best achieved with
more detectors and lower background temperatures and
pressures.

Reaching thermally-limited detection.–Our optimal
measurement sensitivities (6), (7) were derived assuming
that thermal noise dominates over measurement-added
noise. Measurement noise is an unavoidable limitation
imposed by quantum mechanics itself. The prototypical
example was given by Caves [9], who studied the funda-
mental limits to continuous position sensing of a detector
mass md. Suppose we prepare the detector in a narrow
wavepacket of width �x. The mass will then have mo-
mentum uncertainty �p � ~/�x. Performing another
measurement of position a time ⌧ later will thus have
position uncertainty of order �x + ~⌧/md�x. Optimiz-
ing this as a function of the initial packet size, we see that
we cannot resolve the position better than the standard
quantum limit (SQL) �x

2
SQL

⇠ ~⌧/md. Converting this
to an impulse measurement, we have �I

2
SQL

= ~md/⌧
2.

In our case, achieving the SQL would give the ratio of

measurement-added noise to thermal noise as

�I
2
meas

�I
2
th

=

(
~v2

/4kBT�d
2
, mechanical

~md/PAdd
2
p

makBT , free-falling.
(9)

Unfortunately, the measurement-added noise is actu-
ally dominant! For mm, mg scale detectors with res-
onator dampings � ⇠ 10�6 Hz and helium gas pres-
sures ⇠ 10�10 Pa at T ⇠ 10 mK, we would need
10 log10 �Imeas/�Ith ⇡ 50, 100 dB reduction in the
measurement noise, respectively. This is a fundamental
problem for achieving our desired sensitivities.

Fortunately, there are known ways to beat the SQL.
One is to use squeezed input light [9–12]. This method is
based on the di↵erent roles of the amplitude and phase
quadratures X, Y of the light used to probe the detec-
tor. In position measurement, the mechanical position
is encoded only in the phase quadrature Y , through the
optomechanical coupling

HOM = gxX. (10)

Here, g / g0

p
P is the optomechanical coupling strength

enhanced by a laser with input power P , and the quadra-
tures are conjugate variables [X,Y ] = i. By squeezing
the input vacuum state of the light fluctuations about
this laser, one can reduce noise in the Y quadrature at
the expense of increasing noise in the X quadrature; since
we are only looking at Y , this allows us to reduce the
measurement-added noise. While in principle there is no
limit to this noise reduction, in practice, this scheme has
been limited to date to about 12 dB of squeezing.

For our purposes, another approach may be the most
fruitful: monitoring of the velocity. Note that our sig-
nal (2) is a highly broadband impulse signal, delivered
on timescales ⌧ much faster than the mechanical scales
in our problem. In particular, the impulse is delivered
so fast that the detector is essentially a free particle over
the course of a given event. Since the velocity operator
commutes with the free particle Hamiltonian, measure-
ment of velocity produces no backaction–it is a quantum
non-demolition measurement [13]. Based on early work
of Braginsky and Khalili [13, 14], we have developed a
protocol which appears capable of achieving the neces-
sary amount of backaction-evasion needed to realize our
thermally-limited estimate, a schematic of which appears
in figure 1. The fundamental limitation here is simply
due to optical losses; in principle, the reduction in noise is
unlimited. The details of this protocol are somewhat in-
tricate, and will appear in a separate publication, but we
note that related approaches from electromechanics [16]
and LIGO [13, 17] have previously been demonstrated.
Concrete realizations.–The most familiar example of a

mechanical resonator involves a suspended mirror, as in
LIGO [8]. The mirror acts as a pendulum of frequency
!m and forms an end of an optical cavity. The opti-
cal mode is used to readout of the mechanical position.
In our proposed array with many sensors, using optical
light may be di�cult; one could instead consider mirrors
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FIG. 2. Estimated detected event rate, cut o↵ by demanding 5� SNR, with various detector configurations. Here we use the
same fiducial parameters as in (6),(7): helium background gas at pressure 10�10 Pa, resonator damping rates � = 10�6 Hz,
with 109 sensors. Blue curves represent arrays of milligram-scale detectors spaced at either 1 mm or 1 cm, while red curves
represent arrays of gram-scale detectors at either 1 cm or 10 cm spacing. The dotted lines represent how our sensitivity floor
varies as a function of detector temperature. The left column shows detectors arrayed in a cubical lattice as pictured in figure
1. The right column shows detectors in a planar array, one detector thick.
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FIG. 3. Broad classification of DM theory classes according to mass. For masses below ⇠ 10�22 eV, the DM wavelength is
too large to fit inside ⇠ kpc dwarf galaxies. For masses below ⇠ 10 eV, DM must be bosonic; fermionic DM in this mass
range primarily fill shells of phase space that exceed galactic escape velocity. Between the keV-100 TeV range, DM can viably
be in thermal equilibrium with the SM in the early universe. In our detectable mass range, between mGUT ⇠ 1016 GeV and
mPl ⇠ 1019 GeV, DM must have a nonthermal cosmolgocial history; for trans-Planckian masses, the candidate must also be a
composite state, primordial black hole, or an extended object (e.g a topological defect).
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in the case of detectors mechanically coupled to a support
structure, and
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(7)

for freely-falling detectors. Here for simplicity we as-
sumed a cubical array of side length L (so that the
number of sensors nearest the DM path is N ⇠ L/d)
with L = 1 m, and assumed dilution fridge temper-
atures T = 10 mK, helium ion-pump vacuum pres-
sures P = 10�10 Pa, ma = 4 u, mechanical damping
� = 10�6 Hz, and typical solid density ⇢solid ⇠ 10 g/cm3

for the detectors.

The signal-to-noise ratios (6), (7) represent our fun-
damental detection sensitivities. A DM candidate of
mass m� passing through a detector will be detected
with 5�� confidence if the detector parameters are such
that SNR � 5. Clearly, detecting a heavier DM candi-
date is easier. On the other hand, the number density of
DM at high mass is low. The observed local DM density
⇢� ⇡ 0.3 GeV / cm3 [43] means that, for a detector array
of total cross-section A, the rate of DM passing through
the array is

R =
⇢vA

m�

⇠ 50

year

✓
mPl

m�

◆✓
A

102 m2

◆
. (8)

In figure 2, we plot our predicted event rates with a va-
riety of detector geometries. These results suggest that
it would be straightforward to detect DM with masses
around the Planck mass, using an array of 106 � 109

detectors in a meter-scale apparatus. Reaching heavier
masses can be achieved with a sparse, larger array of
detectors; reaching smaller masses is best achieved with
more detectors and lower background temperatures and
pressures.

Reaching thermally-limited detection.–Our optimal
measurement sensitivities (6), (7) were derived assuming
that thermal noise dominates over measurement-added
noise. Measurement noise is an unavoidable limitation
imposed by quantum mechanics itself. The prototypical
example was given by Caves [9], who studied the funda-
mental limits to continuous position sensing of a detector
mass md. Suppose we prepare the detector in a narrow
wavepacket of width �x. The mass will then have mo-
mentum uncertainty �p � ~/�x. Performing another
measurement of position a time ⌧ later will thus have
position uncertainty of order �x + ~⌧/md�x. Optimiz-
ing this as a function of the initial packet size, we see that
we cannot resolve the position better than the standard
quantum limit (SQL) �x

2
SQL

⇠ ~⌧/md. Converting this
to an impulse measurement, we have �I

2
SQL

= ~md/⌧
2.

In our case, achieving the SQL would give the ratio of

measurement-added noise to thermal noise as

�I
2
meas

�I
2
th

=

(
~v2

/4kBT�d
2
, mechanical

~md/PAdd
2
p

makBT , free-falling.
(9)

Unfortunately, the measurement-added noise is actu-
ally dominant! For mm, mg scale detectors with res-
onator dampings � ⇠ 10�6 Hz and helium gas pres-
sures ⇠ 10�10 Pa at T ⇠ 10 mK, we would need
10 log10 �Imeas/�Ith ⇡ 50, 100 dB reduction in the
measurement noise, respectively. This is a fundamental
problem for achieving our desired sensitivities.

Fortunately, there are known ways to beat the SQL.
One is to use squeezed input light [9–12]. This method is
based on the di↵erent roles of the amplitude and phase
quadratures X, Y of the light used to probe the detec-
tor. In position measurement, the mechanical position
is encoded only in the phase quadrature Y , through the
optomechanical coupling

HOM = gxX. (10)

Here, g / g0

p
P is the optomechanical coupling strength

enhanced by a laser with input power P , and the quadra-
tures are conjugate variables [X, Y ] = i. By squeezing
the input vacuum state of the light fluctuations about
this laser, one can reduce noise in the Y quadrature at
the expense of increasing noise in the X quadrature; since
we are only looking at Y , this allows us to reduce the
measurement-added noise. While in principle there is no
limit to this noise reduction, in practice, this scheme has
been limited to date to about 12 dB of squeezing.

For our purposes, another approach may be the most
fruitful: monitoring of the velocity. Note that our sig-
nal (2) is a highly broadband impulse signal, delivered
on timescales ⌧ much faster than the mechanical scales
in our problem. In particular, the impulse is delivered
so fast that the detector is essentially a free particle over
the course of a given event. Since the velocity operator
commutes with the free particle Hamiltonian, measure-
ment of velocity produces no backaction–it is a quantum
non-demolition measurement [13]. Based on early work
of Braginsky and Khalili [13, 14], we have developed a
protocol which appears capable of achieving the neces-
sary amount of backaction-evasion needed to realize our
thermally-limited estimate, a schematic of which appears
in figure 1. The fundamental limitation here is simply
due to optical losses; in principle, the reduction in noise is
unlimited. The details of this protocol are somewhat in-
tricate, and will appear in a separate publication, but we
note that related approaches from electromechanics [16]
and LIGO [13, 17] have previously been demonstrated.
Concrete realizations.–The most familiar example of a

mechanical resonator involves a suspended mirror, as in
LIGO [8]. The mirror acts as a pendulum of frequency
!m and forms an end of an optical cavity. The opti-
cal mode is used to readout of the mechanical position.
In our proposed array with many sensors, using optical
light may be di�cult; one could instead consider mirrors
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What can we do with only one sensor?
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1.8 g/cm3 [39], which is optically levitated in high vac-
uum. A detailed description of the trapping setup is given
in [30]. Active feedback is used to cool the sphere’s COM
motion in all translational degrees of freedom to an ef-
fective temperature, Teff ⇡ 200 µK, which simulations
indicate provides the optimal impulse sensitivity for the
measured force noise,

p
SFF ⇡ 1 aN/

p
Hz [30]. Data

were acquired during a 7 day period between June 15–
21, 2020. Prior to beginning data acquisition, the sphere
was optically trapped at <⇠ 5 ⇥ 10�7 mbar and its net
electric charge neutralized [30, 40], remaining zero (with
no spontaneous charging) throughout data acquisition.

This work considers only motion of the sphere in the
x-direction [see Fig. 1(a)], since the impulse response
could be directly calibrated using existing electrodes sur-
rounding the trap. Upgrades to add additional elec-
trodes can allow accurate calibration of the sphere’s 3D
motion [38, 50]. The sphere’s x-position was measured
using two independent sensors: one within the feed-
back loop (“in-loop”) and one utilizing a separate imag-
ing beam and photodiode (“out-of-loop”) [30]. Data
from a commercial accelerometer (Wilcoxon 731A/P31)
positioned just outside the vacuum chamber were also
recorded. Data from all sensors were continuously ac-
quired in ⇠ 105 s long data files (220 samples at a sam-
pling rate of 10 kHz). Additional data were taken to cal-
ibrate impulse amplitudes and measure selection and re-
construction e�ciencies during dedicated runs performed
at the beginning, middle, and end of the acquisition pe-
riod.

To search for candidate impulse events, waveforms in
each data file are first filtered to remove narrow lines
and out-of-band noise, while preserving the majority of
the signal around the resonance frequency f0 ⇠ 85 Hz.
The same filter is then applied to a signal template con-
structed from the expected impulse response of a damped
harmonic oscillator, using f0 and the damping coe�cient,
�0 ⇠ 35 Hz. These parameters were determined from the
calibration data and stable within 5% and 10%, respec-
tively, throughout the acquisition period. After filtering,
the template and waveform are cross-correlated, and lo-
cal extrema (i.e., candidate impulses) are identified in the
correlated data, for which the amplitude, time, and �2

goodness-of-fit statistic are recorded. This reconstruction
is performed for the in-loop and out-of-loop waveforms in
calibration and DM-search data.

Passing DM particles [Fig. 1(b)] will impart an im-
pulse over a time �t ⇠ bmax/v, where bmax is the largest
impact parameter at which a su�ciently large signal is
produced and v ⇠ 200 km/s is the DM velocity. At all
DM masses and couplings considered here, bmax

<⇠ 1 mm,
and the resulting impulses are essentially instantaneous
(�t <⇠ 5 ns) relative to the ⇠ms sphere response time. To
mimic this signal in the calibration data, a net electric
charge of �1 e was added to the sphere and a sequence of
square voltage pulses (of length �t = 100 µs) with fixed

(c)

Neutron ⃗qDM Nugget

v � 200 km/s
(b)(a)

delec

� 1/m�

FIG. 1. Schematics of: (a) the levitated sphere and calibra-
tion electrodes, and (b) a DM nugget coherently scattering
from a sphere via a light mediator, producing a momentum
transfer ~q. (c) Example 4.8 GeV impulse produced by apply-
ing a pulsed electric field at t = 0 to a sphere with charge
�1 e. The raw waveform with minimal filtering (light, solid),
filtered waveform (dark, solid), and filtered template (dashed)
are shown.

amplitudes ranging between 20 V and 1.28 kV was ap-
plied to the calibration electrodes, which had measured
spacing delec = 3.99 ± 0.05 mm. The impulse time is
su�ciently long to avoid distortion by the high voltage
amplifier (Trek 2220), but remains short compared to the
sphere response time.
Each calibration run consisted of ⇠ 200 impulses for

each of 7 amplitudes in the range 0.15–9.6 GeV. The ap-
plied impulses span the analysis range considered here
and provide a direct calibration of the reconstructed im-
pulse amplitudes in the DM-search data, with relative
amplitude uncertainty of 1.3% dominated by the uncer-
tainty on delec. This calibration technique avoids uncer-
tainties related to the sphere mass and accounts for small
time variations in f0 and �0. Figure 1(c) shows an ex-
ample of the calibrated response. Prior to calibration,
the reconstructed amplitudes were linear within 1% over
the range from 1–10 GeV. At amplitudes <⇠ 1 GeV the
calibration removes non-linearity due to template search
bias [51].
Data selection cuts were applied to avoid spurious sig-

nals from environmental noise. First, a significant in-
crease in the number of noise-like events was observed
when someone was present in the lab. A “lab entry”
cut was applied to exclude such periods based on a de-
tailed lab-access log, which removed 0.82 days (14%) of
livetime. During these noisy periods, the vibrational im-
pulses were found to be both correlated in time (i.e.,
a short sequence of large impulses would typically be
recorded, rather than single, isolated events), and to cor-
relate with those measured by the commercial accelerom-
eter. These observations motivated two additional event
selection cuts. An “accelerometer cut” was applied to ex-
clude data files for which the maximum deviation in the

Nongravitational long range couplings of DM “nuggets”

Monteiro, Afek, Carney, GK, Wang, Moore 2007.12067, PRL



4

FIG. 3. 95% CL upper limits on the DM-neutron coupling,
↵n, versus DM mass, MX , for several example values of me-
diator mass, m�, assuming fX = 1.

means and � = 1.3% and 35%, corresponding to the un-
certainties for delec and Nn / d3sph, respectively.

The resulting 95% CL upper limits on ↵n are shown
in Fig. 3. For m� ⌧ 1/bmax, the limits converge to those
for a massless mediator. For 1/bmax

<⇠ m�
<⇠ 1/dsph,

sensitivity to ↵n is reduced due to the reduction in cross
section to ⇠ m�2

� , and further reduced for m�
>⇠ 1/dsph

by the form-factor suppression from interaction of the
DM with only a fraction of the neutrons in the sphere.
In all cases, the limits become weaker at large MX due
to the reduced DM number density and at small MX due
to the momentum threshold.

While the results in Fig. 3 apply for any DM model
interacting with neutrons via the generic potential in
Eq. 1, they can also be translated to a specific micro-
scopic model. As an example, we consider bound states of
asymmetric DM [47, 60] in which composite DM nuggets
of total mass MX can be formed from a large num-
ber (Nd > 104) of lighter constituents, each with mass
md. Recent studies indicate that such composite parti-
cles provide viable DM candidates and could be formed in
the early universe at the required densities to constitute
some, or all, of the relic DM density [42–47].

Example constraints from this search for m� = 0.1 eV,
md = 1 keV, and fX = (0.1, 1) are shown in Fig. 4.
In contrast to nuclear recoils (NR) from nuggets with
these parameters [60], screening of the interaction within
the nugget has negligible e↵ect on d�/dq regardless of
gd since the geometric cross section of the nugget is
much smaller than the total cross section, for all MX

considered. For these parameters, bounds on the DM-
DM scattering cross-section [73] are expected to prevent
such nuggets from providing the dominant component
of DM, but cannot constrain such models if they pro-
vide only a subcomponent of the total relic density, with
fX <⇠ 0.1 [60]. In such models, which typically contain a
complex dark sector and a correspondingly complex for-

FIG. 4. Upper limits on the equivalent DM-neutron
scattering cross-section for a point-like nugget, �Xn ⌘
4⇡↵2

nµ
2
Xn/q

4
0 [60], versus MX , for the model described in the

text with fX = 0.1 (solid) and fX = 1 (dashed). Here �Xn

is evaluated for md = 1 keV, m� = 0.1 eV, and at a refer-
ence momentum of q0 = mnv0 where mn is the neutron mass
and µXn is the DM-neutron reduced mass. Model-dependent
fifth-force constraints [48, 49] (dotted) are also shown, as-
suming gd ⇡ 1. Due to sharp DM nugget form-factor sup-
pression in the parameter space chosen here, existing detec-
tors searching for ⇠eV–keV scale NRs [61–68] only constrain
�Xn � 10�22 cm2. The results reported here exceed even the
projected sensitivity of a ⇠kg-yr exposure of an ambitious fu-
ture detector with NR threshold as low as 1 meV (dot-dashed,
see, e.g., [60, 69–71]). CMB limits on DM-baryon interactions
assume a coupling to protons, which is model-dependent and
need not apply here [72], although the fX = 1 region is ex-
pected to be excluded by DM self-interaction bounds [60, 73],
which do not apply for fX <⇠ 0.1.

mation history, production of a subcomponent of such
composite particles is generically possible, similar to the
wide range of composite particles formed in the visible
sector. Use of the SHM allows direct comparison of the
results presented here to the projected sensitivity of exist-
ing and future detectors in previous work [60]. However,
if deviations from the SHM arise, e.g., from DM self-
interactions, then the derived limits could be modified.
For example, the limits would generally be strengthened
if fX⇢X were larger than assumed in the SHM, or if the
local velocity distribution were shifted towards lower ve-
locities.

These results—using only a single, nanogram-mass
sphere and less than a week of livetime—already pro-
vide many orders of magnitude more sensitivity to DM
interactions in these models than existing direct detec-
tion searches. Large detectors searching for DM-induced
NRs using cryogenic calorimeters [61, 62], semiconduc-
tors [63, 64], or liquid noble targets [65–68] do not signif-
icantly constrain these models due to the low probability
of producing events above their ⇠eV to keV scale energy
thresholds. In contrast, the techniques presented here
(similar to other proposed techniques utilizing collective

Single sensor prototype already setting new limits
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1.8 g/cm3 [39], which is optically levitated in high vac-
uum. A detailed description of the trapping setup is given
in [30]. Active feedback is used to cool the sphere’s COM
motion in all translational degrees of freedom to an ef-
fective temperature, Teff ⇡ 200 µK, which simulations
indicate provides the optimal impulse sensitivity for the
measured force noise,

p
SFF ⇡ 1 aN/

p
Hz [30]. Data

were acquired during a 7 day period between June 15–
21, 2020. Prior to beginning data acquisition, the sphere
was optically trapped at <⇠ 5 ⇥ 10�7 mbar and its net
electric charge neutralized [30, 40], remaining zero (with
no spontaneous charging) throughout data acquisition.

This work considers only motion of the sphere in the
x-direction [see Fig. 1(a)], since the impulse response
could be directly calibrated using existing electrodes sur-
rounding the trap. Upgrades to add additional elec-
trodes can allow accurate calibration of the sphere’s 3D
motion [38, 50]. The sphere’s x-position was measured
using two independent sensors: one within the feed-
back loop (“in-loop”) and one utilizing a separate imag-
ing beam and photodiode (“out-of-loop”) [30]. Data
from a commercial accelerometer (Wilcoxon 731A/P31)
positioned just outside the vacuum chamber were also
recorded. Data from all sensors were continuously ac-
quired in ⇠ 105 s long data files (220 samples at a sam-
pling rate of 10 kHz). Additional data were taken to cal-
ibrate impulse amplitudes and measure selection and re-
construction e�ciencies during dedicated runs performed
at the beginning, middle, and end of the acquisition pe-
riod.

To search for candidate impulse events, waveforms in
each data file are first filtered to remove narrow lines
and out-of-band noise, while preserving the majority of
the signal around the resonance frequency f0 ⇠ 85 Hz.
The same filter is then applied to a signal template con-
structed from the expected impulse response of a damped
harmonic oscillator, using f0 and the damping coe�cient,
�0 ⇠ 35 Hz. These parameters were determined from the
calibration data and stable within 5% and 10%, respec-
tively, throughout the acquisition period. After filtering,
the template and waveform are cross-correlated, and lo-
cal extrema (i.e., candidate impulses) are identified in the
correlated data, for which the amplitude, time, and �2

goodness-of-fit statistic are recorded. This reconstruction
is performed for the in-loop and out-of-loop waveforms in
calibration and DM-search data.

Passing DM particles [Fig. 1(b)] will impart an im-
pulse over a time �t ⇠ bmax/v, where bmax is the largest
impact parameter at which a su�ciently large signal is
produced and v ⇠ 200 km/s is the DM velocity. At all
DM masses and couplings considered here, bmax

<⇠ 1 mm,
and the resulting impulses are essentially instantaneous
(�t <⇠ 5 ns) relative to the ⇠ms sphere response time. To
mimic this signal in the calibration data, a net electric
charge of �1 e was added to the sphere and a sequence of
square voltage pulses (of length �t = 100 µs) with fixed
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Neutron ⃗qDM Nugget

v � 200 km/s
(b)(a)

delec

� 1/m�

FIG. 1. Schematics of: (a) the levitated sphere and calibra-
tion electrodes, and (b) a DM nugget coherently scattering
from a sphere via a light mediator, producing a momentum
transfer ~q. (c) Example 4.8 GeV impulse produced by apply-
ing a pulsed electric field at t = 0 to a sphere with charge
�1 e. The raw waveform with minimal filtering (light, solid),
filtered waveform (dark, solid), and filtered template (dashed)
are shown.

amplitudes ranging between 20 V and 1.28 kV was ap-
plied to the calibration electrodes, which had measured
spacing delec = 3.99 ± 0.05 mm. The impulse time is
su�ciently long to avoid distortion by the high voltage
amplifier (Trek 2220), but remains short compared to the
sphere response time.
Each calibration run consisted of ⇠ 200 impulses for

each of 7 amplitudes in the range 0.15–9.6 GeV. The ap-
plied impulses span the analysis range considered here
and provide a direct calibration of the reconstructed im-
pulse amplitudes in the DM-search data, with relative
amplitude uncertainty of 1.3% dominated by the uncer-
tainty on delec. This calibration technique avoids uncer-
tainties related to the sphere mass and accounts for small
time variations in f0 and �0. Figure 1(c) shows an ex-
ample of the calibrated response. Prior to calibration,
the reconstructed amplitudes were linear within 1% over
the range from 1–10 GeV. At amplitudes <⇠ 1 GeV the
calibration removes non-linearity due to template search
bias [51].
Data selection cuts were applied to avoid spurious sig-

nals from environmental noise. First, a significant in-
crease in the number of noise-like events was observed
when someone was present in the lab. A “lab entry”
cut was applied to exclude such periods based on a de-
tailed lab-access log, which removed 0.82 days (14%) of
livetime. During these noisy periods, the vibrational im-
pulses were found to be both correlated in time (i.e.,
a short sequence of large impulses would typically be
recorded, rather than single, isolated events), and to cor-
relate with those measured by the commercial accelerom-
eter. These observations motivated two additional event
selection cuts. An “accelerometer cut” was applied to ex-
clude data files for which the maximum deviation in the
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Concluding Remarks

DM search effort has vastly expanded in scope 
Broader priors on WIMP DM since 2010s motivate wider mass range

Many models, many novel “laboratories”

Neutron Stars Exoplanets Nanospheres

Electron Proton HiggsNeutrino EarthPlanck

     WIMPZILLAsWavelike DM    Dark Sectors 

MW SatelitesNeutrino Oscill. Windchime Project
Direct Deflection
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