Novel Detection Strategies for Dark Matter From ALPs to 'ZILLAS

Gordan Krnjaic Fermilab & University of Chicago

IDM 2022, Vienna Austria, July 18, 2022

Image: Volker Springel

Huge Range of Possible DM Masses

de Broglie wavelength can't exceed dwarf galaxy scales

$$\lambda_{\rm dB} = \frac{2\pi}{mv} = 0.4 \,\mathrm{kpc} \left(\frac{10^{-22} \,\mathrm{eV}}{m_{\rm DM}}\right) \left(\frac{10^{-3} c}{v}\right)$$

Would have been observed indirectly via microlensing

Greene, Kavanagh 2007.10722

Huge Range of Possible DM Masses

Must be bosonic (integer spin)

Pauli blocking limits fermion phase space density Must be primordial black hole or extended object

example: dark nuclei

GK, Sigurdson 1406.1171 Phys. Lett. B.

Huge Range of Possible DM Masses

 $m_p \approx \text{GeV}/c^2 \approx 10^{-24} \,\text{gram}$

$$m_{\rm PL} = G_N^{-1/2}$$

Organizing Principle:

Broad (& biased) survey of new ideas to detect DM in non-traditional "laboratories"

Overview

Wavelike DM

Dark Sectors

WIMPZILLAs

Overview

Wavelike DM

Dark Sectors

WIMPZILLAs

"Axions" proposed to explain absence of neutron electric dipole moment More general category: Axion Like Particles — "ALPs" Peccei, Quinn 1977, Phys. Rev. Lett.

"Axions" proposed to explain absence of neutron electric dipole moment More general category: Axion Like Particles — "ALPs" Peccei, Quinn 1977, Phys. Rev. Lett.

Must be produced very "cold" in the early universe $\implies \Gamma_{int} < H$ Otherwise would be highly relativistic

"Axions" proposed to explain absence of neutron electric dipole moment More general category: Axion Like Particles — "ALPs" Peccei, Quinn 1977, Phys. Rev. Lett.

Must be produced very "cold" in the early universe $\implies \Gamma_{int} < H$ Otherwise would be highly relativistic

Saturating lower bound yields "fuzzy" dark matter $m \sim 10^{-22} \,\mathrm{eV/c^2}$ Doesn't clump below ~ kpc scales, cuts off matter power spectrum Hu, Barkana, Gruzinov astro-ph/0003365 Phys. Rev. Lett.

How can these be DM candidates?

Field initially displaced from minimum in the early universe

Begins oscillation when mass ~ Hubble $m_a \sim H$ Redshifts like non relativistic matter $\langle \rho_a \rangle \sim m_a^2 a^2 \propto R^{-3}$

deBroglie wavelength > inter particle spacing (like a classical field)

Wave-like DM + neutron stars

ALP coupling to photons $g_{a\gamma\gamma} a\vec{E} \cdot \vec{B}$ modifies Maxwell eqs.

$$a \longrightarrow \gamma \qquad E_{\gamma} \sim m_a (1 + v^2)$$
External B-field \longrightarrow enables conversion $a \rightarrow \gamma$

Wave-like DM + neutron stars

ALP coupling to photons $g_{a\gamma\gamma} a\vec{E} \cdot \vec{B}$ modifies Maxwell eqs.

$$a \longrightarrow \gamma \qquad E_{\gamma} \sim m_a (1 + v^2)$$
External B-field \longrightarrow enables conversion $a \rightarrow \gamma$

ALP passing through a neutron star can convert into radio line

In plasma, photon gets longitudinal polarization "mixes" with ALP conversion resonantly enhanced when $m_a \sim \omega_p$

Huang, Kadota, Sekiguchi, Tashiro 1803.08230

Hook, Kahn, Safdi, Sun 1804.03145

Wave-like DM + neutron stars

Projections for radio searches aimed at isolated neutron stars $M_{\rm NS} \sim M_{\odot}$ Assuming 100 hrs on Arecibo Telescope with effective flux $\Phi \sim 2 \, {\rm Jy}$ No other radio emission except thermal

Huang, Kadota, Sekiguchi, Tashiro 1803.08230

Hook, Kahn, Safdi, Sun 1804.03145

Neutrinos change flavor "oscillate" as they propagate

In vacuum oscillation probability $P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$

Now couple neutrinos to wavelike DM $\phi(t) = \left(2\rho_{\phi}^{\odot}/m_{\phi}^2\right)^{1/2} \cos m_{\phi} t$

Neutrinos change flavor "oscillate" as they propagate

In vacuum oscillation probability $P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$

Now couple neutrinos to wavelike DM
$$\phi(t) = \left(2\rho_{\phi}^{\odot}/m_{\phi}^2\right)^{1/2} \cos m_{\phi} t$$

Time-dependent neutrino mass shift... ... modifies probability through

$$\Delta m^2 \to \Delta m^2 \left(1 + \frac{2\delta m_\nu(t)}{m_\nu} \right)$$

$$\mathcal{L}_{\text{int}} = [m_{\nu} + g\phi(t)] \,\overline{\nu}\nu$$
$$\underbrace{=}{\delta m_{\nu}(t)}$$

What's the relevant timescale? $\tau_{\phi} = \frac{2\pi}{m_{\phi}} \sim 10 \min\left(\frac{10^{17} \text{ eV}}{m_{\phi}}\right)$

If period **short** wrt neutrino travel time: effect averages to zero If period **long** wrt observation time: unobservable

Need: $t_{\rm obs} > \tau_{\phi} > t_{\nu \, \rm travel} = L/c$

What's the relevant timescale? $\tau_{\phi} = \frac{2\pi}{m_{\phi}} \sim 10 \min\left(\frac{10^{17} \text{ eV}}{m_{\phi}}\right)$

If period **short** wrt neutrino travel time: effect averages to zero If period **long** wrt observation time: **unobservable**

Need: $t_{\rm obs} > \tau_{\phi} > t_{\nu \, \rm travel} = L/c$

Effect likely also important for ultra high energy and supernova neutrinos Longer travel times and different energy profiles than terrestrial sources

(accelerators + nuclear reactors)

dashed = projection
 solid = excluded

Scalar DM induces Majorana mass for right handed neutrinos

$$\mathcal{L} \supset y_{\nu} H\ell N + \frac{y_{\phi}}{2} \phi NN + h.c.$$

Dev, GK, Machado, Ramani, 2205.06821

Scalar DM induces Majorana mass for right handed neutrinos

$$\mathcal{L} \supset y_{\nu} H\ell N + \frac{y_{\phi}}{2} \phi NN + h.c.$$

DM field sets dynamical Majorana mass and *tiny* mass splitting

$$m_D = \frac{y_{\nu}v}{\sqrt{2}} , \quad m_M = \frac{y_{\phi}}{2}\phi(t) \qquad m_M \ll m_D$$

Dev, GK, Machado, Ramani, 2205.06821

Scalar DM induces Majorana mass for right handed neutrinos

$$\mathcal{L} \supset y_{\nu} H\ell N + \frac{y_{\phi}}{2} \phi NN + h.c.$$

DM field sets dynamical Majorana mass and *tiny* mass splitting

$$m_D = \frac{y_{\nu}v}{\sqrt{2}} , \quad m_M = \frac{y_{\phi}}{2}\phi(t) \qquad m_M \ll m_D$$

Mass basis has nearby active and sterile states that oscillate

$$P_{ee}(t) = |\langle \nu(t) | \nu_e \rangle|^2 = \cos^2 \left(\frac{1}{4E_\nu} \int_0^t dt' \delta m^2(t') \right)$$

Dev, GK, Machado, Ramani, 2205.06821

DM coupling to RHN

Dev, GK, Machado, Ramani, 2205.06821

Overview

Wavelike DM

Dark Sectors

WIMPZILLAs

Dark Sectors "Generalized WIMPs"

Dark Sector models have WIMP-like features, but span a broader mass range DM is microscopic particle and new 5th force couples it to visible matter

Like with WIMPs we care about $m_{\rm DM}, \sigma = {\rm rate}/{\rm flux}$ Unlike WIMPs, weak force doesn't set interaction strength

Many mechanisms to produce DM abundance in early universe Freeze out (like WIMPs)... but also "freeze-in" and "asymmetric DM"... etc.

Dark Sectors + "Direct Deflection"

Millicharged DM charge separated using oscillating EM deflector cavity
 Deflected current readout in shielded LC circuit w/ magnetometer

Berlin, D'Agnolo, Ellis, Schuster, Toro 1908.06982

Dark Sectors + "Direct Deflection"

Berlin, D'Agnolo, Ellis, Schuster, Toro 1908.06982

Dark Sectors + Exoplanet "Detectors"

Exoplanet moving through DM "wind" may be heated through baryon-DM scattering and DM annihilation

Leane and Smirnov 2010.00015

Dark Sectors + Milky Way Satellites

DM-baryon scattering pre-recombination washes out small scale structure

DES Collaboration 2008.00022

Dark Sectors + Milky Way Satellites

DES Collaboration 2008.00022

Dark Sectors + Milky Way Satellites + BBN

For a contact interaction, DM is chemical equilibrium during BBN $ho_{\rm DM} \sim T_{\gamma}^4$ Increases the Hubble rate and affects light elements $\Delta N_{\rm eff} \propto
ho_{\rm rad}/
ho_{\gamma} \gtrsim 0.5$

GK, McDermott 1908.00007

Overview

Wavelike DM

Dark Sectors

WIMPZILLAs

WIMPZILLAS and ultra heavy DM

Broad category with many viable production mechanisms

Too heavy for thermal equilibrium in early universe

Kolb, Chung, Riotto arXiv/9810361

$$m_{\rm PL} = 2.2 \times 10^{-5} \,\mathrm{gram}$$

WIMPZILLAS and ultra heavy DM

Broad category with many viable production mechanisms Too heavy for thermal equilibrium in early universe Kolb, Chung, Riotto arXiv/9810361

Could we ever detect it using gravity alone?

$$F_{G} = G_{N} \frac{m_{\rm DM} m_{\rm test}}{d^{2}} \approx 10^{-21} N \left(\frac{m_{\rm DM}}{m_{\rm PL}}\right) \left(\frac{m_{\rm test}}{m_{\rm PL}}\right) \left(\frac{5 \,\mathrm{mm}}{d}\right)^{2}$$

"zeptonewton"

This sounds totally nuts, right?

Zeptonewton force sensing with nanospheres in an optical lattice

Can we use this to gravitationally detect WIMPZILLAS?

arXiv:1603.02122

Levitating Sensor Arrays "Windchime"

Signal to noise ratio gravitational impulse

RMS noise impulse from gas

$$\mathrm{SNR}^2 = \frac{I^2}{\Delta I^2} = \frac{4\bar{F}^2 N\tau}{\alpha}$$

$$\alpha = PA\sqrt{m_{\rm gas}k_BT}$$

Carney, Ghosh, GK, Taylor 1903.00492 PRD

Levitating Sensor Arrays "Windchime"

$$\mathrm{SNR}^2 = \frac{I^2}{\Delta I^2} = \frac{4\bar{F}^2 N\tau}{\alpha} \qquad \qquad \alpha = PA\sqrt{m_{\mathrm{gas}}k_BT}$$

If all noise is uncorrelated and thermal $g_{sos} = hg_{sos} hg_{$

$$\mathrm{SNR}^2 \sim 10^4 \left(\frac{m_{\chi}}{\mathrm{mg}}\right)^2 \left(\frac{m_{\mathrm{det}}}{\mathrm{mg}}\right)^2 \left(\frac{L}{\mathrm{m}}\right) \left(\frac{\mathrm{mm}}{b}\right)^4 \left(\frac{10\,\mathrm{mK}}{T}\right) \left(\frac{10^{-10}\,\mathrm{Pa}}{P}\right) \left(\frac{4\mathrm{u}}{m_{\mathrm{gas}}}\right)^{1/2}$$

Very low rate — tradeoff with SNR: $R = \frac{\rho v A}{m_{\chi}} \sim \frac{50}{\text{year}} \left(\frac{m_{\text{Pl}}}{m_{\chi}}\right) \left(\frac{A}{10^2 \text{ m}^2}\right)$

Carney, Ghosh, GK, Taylor 1903.00492

Levitating Sensor Arrays "Windchime"

Correlated signal along *only one* linear track Uncorrelated along *all other* possible linear tracks

Need big detector volume

L

Need small spacing

Total detector count

$$= Nb \sim m$$
 $b \sim mm$

$$\implies (L/d)^3 \sim 10^9$$

Carney, Ghosh, GK, Taylor 1903.00492

CHEMISTRY

NOVEMBER 23, 2020 | 65 MILLION-YEAR-OLD EVOLUTIONARY ARMS RACE: MOTHS' EXTRAORDINARILY SOPHISTICATED WING DESIGN

TECHNOLOGY

HOME PHYSICS NEWS

BIOLOGY

HOT TOPICS

Dark Matter: A Billion Tiny Pendulums Could Detect the Universe's Missing Mass

PHYSICS

SCIENCE

SPACE

TOPICS: Astrophysics
 Dark Matter
 National Institute Of Standards And Technology
 Particle Physics

 Popular

By NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) OCTOBER 18, 2020

EARTH

HEALTH

PHYSICS

A Dark Matter Detector Based on a Wind Chime Seems Just Weird Enough to Work

News Podcasts Video Technology Space Physics Health More * Shop Courses Events

The detector with a billion sensors that may finally snare dark matter

Dark matter must exist, but has evaded all attempts to find it. Now comes our boldest plan yet – sensing its minuscule gravitational force as it brushes past us

Space 1 July 2020
 By Adam Mant

<text> NDEPENDENT Support 10 Culture NDY/LIF NDYBEST VICE Ally EDITION CONVERSATIONS Sciencific 10 20 Addrew_griffin 11 March 15 October 2020 17:51

Nature, Gizmodo, New Scientist, NIST Tech Beat The Independent New Atlas Medium Newsbreak

What can we do with only one sensor?

Nongravitational long range couplings of DM "nuggets" $V = \frac{\alpha_n}{r} \exp(-m_{\phi}r)$

Monteiro, Afek, Carney, GK, Wang, Moore 2007.12067, PRL

Single sensor prototype already setting new limits

$$\alpha_n = \frac{(N_d g_d)(N_n g_n)}{4\pi}$$

Monteiro, Afek, Carney, GK, Wang, Moore 2007.12067, PRL

DM search effort has vastly expanded in scope

Broader priors on WIMP DM since 2010s motivate wider mass range

Many models, many novel "laboratories"

Wavelike DM

Neutron Stars Neutrino Oscill. **Dark Sectors**

Exoplanets MW Satelites Direct Deflection WIMPZILLAs

Nanospheres Windchime Project

Thanks!