Level 2 in SCETlib.

Frank Tackmann

Deutsches Elektronen-Synchrotron

EWWG, June 03, 2020

SCETlib: Markus Ebert, Johannes Michel, FT

Factorization at Small q_T .

At leading order in q_T/Q (leading power), q_T spectrum factorizes into hard, collinear, and soft contributions (here: $x_{a,b} \equiv (Q/E_{cm})e^{\pm Y}$)

$$rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}q_T^2} = \sum_{a,b} H_{ab}(Q^2,\mu) [B_a B_b S](Q^2,x_a,x_b,ec{q}_T,\mu) igg[1 + \mathcal{O}\Bigl(rac{q_T^2}{Q^2},rac{\Lambda^2_{
m QCD}}{Q^2}\Bigr)igg]$$

$$\begin{split} [B_a B_b S] &= \int \mathrm{d}^2 \vec{k}_a \, \mathrm{d}^2 \vec{k}_b \, \mathrm{d}^2 \vec{k}_s \, \delta^{(2)} (\vec{q}_T - \vec{k}_a - \vec{k}_b - \vec{k}_s) \\ &\times B_a(x_a, \vec{k}_a, \mu, \nu/Q) \, B_b(x_b, \vec{k}_b, \mu, \nu/Q) \, S(\vec{k}_s, \mu, \nu) \end{split}$$

Most general form with no hard-coded choices yet

Factorization at Small q_T .

 \rightarrow

At leading order in q_T/Q (leading power), q_T spectrum factorizes into hard, collinear, and soft contributions (here: $x_{a,b} \equiv (Q/E_{cm})e^{\pm Y}$)

$$rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}q_T^2} = \sum_{a,b} H_{ab}(Q^2,\mu) [B_a B_b S](Q^2,x_a,x_b,ec{q}_T,\mu) igg[1 + \mathcal{O}\Bigl(rac{q_T^2}{Q^2},rac{\Lambda^2_{
m QCD}}{Q^2}\Bigr)igg]$$

$$egin{aligned} &[B_a B_b S] = \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\delta^{(2)}(ec{q}_T - ec{k}_a - ec{k}_b - ec{k}_s) \ & imes\,B_a(x_a,ec{k}_a,\mu,
u/Q)\,B_b(x_b,ec{k}_b,\mu,
u/Q)\,S(ec{k}_s,\mu,
u) \end{aligned}$$

$$\equiv \int \frac{\mathrm{d}^2 \vec{b}_T}{(2\pi)^2} e^{\mathrm{i} \vec{b}_T \cdot \vec{q}_T} \tilde{B}_a(x_a, b_T, \mu, \nu/Q) \tilde{B}_b(x_b, b_T, \mu, \nu/Q) \tilde{S}(b_T, \mu, \nu)$$

$$\equiv \int \! \frac{\mathrm{d}^2 b_T}{(2\pi)^2} \, e^{\mathrm{i} \vec{b}_T \cdot \vec{q}_T} \, \tilde{f}_a(x_a, b_T, \mu, \zeta_a) \, \tilde{f}_b(x_b, b_T, \mu, \zeta_b)$$

(where $\zeta_{a,b} \propto \omega_{a,b}^2$ with $\zeta_a \zeta_b = Q^4$ plays the role of u)

Most general form with no hard-coded choices yet

All 3 forms are still completely equivalent

Schematic Resummation Structure.

 $d\sigma^{(0)} = H(Q,\mu) \times B(p_T,\mu,\nu/Q)^2 \otimes S(p_T,\mu,\nu/p_T)$ $\ln^2 \frac{p_T}{Q} = 2\ln^2 \frac{Q}{\mu} + 2\ln \frac{p_T}{\mu} \ln \frac{\nu}{Q} + \ln \frac{p_T}{\mu} \ln \frac{\mu p_T}{\nu^2}$

• All-order logarithmic structure is encoded in μ, ν dependence

- μ, ν dependence *exactly* cancels *at each order*
- This is how differential equations (RGEs, Collins-Soper eq.) that govern μ, ν dependence are derived
- Resummation follows from solving RGEs, and evolving each function from some starting scales μ_i, ν_i to common (but arbitrary) μ, ν

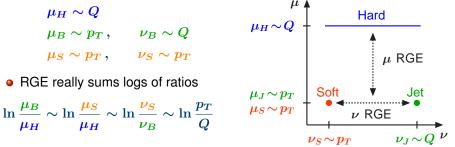
 $H(\mu) = H(\mu_H) \times U_H(\mu_H, \mu)$ $B(\mu, \nu) = B(\mu_B, \nu_B) \otimes U_B(\mu_B, \nu_B; \mu, \nu)$ $S(\mu, \nu) = S(\mu_S, \nu_S) \otimes U_B(\mu_S, \nu_S; \mu, \nu)$

• Arbitrary μ , ν still cancel *exactly* = RGE consistency (path independence)

Schematic Resummation Structure.

 $d\sigma^{(0)} = H(\mu_H) \times U_H(\mu_H, \mu) \times [B(\mu_B, \nu_B) \otimes U_B(\mu_B, \nu_B; \mu, \nu)]^2 \\ \otimes S(\mu_S, \nu_S) \otimes U_B(\mu_S, \nu_S; \mu, \nu)$

• Boundary conditions $H(\mu_H)$, $B(\mu_B, \nu_B)$, $S(\mu_S, \nu_S)$ can (must) be calcluated in (log-free) fixed order, so at



- Choice of boundary scales does matter
 - Determine precise form of resummed logarithms ("resummation" scales)
 - Their dependence only cancels to the order boundary conditions are calculated (in α_s(μ_i), so μ_i are also "renormalization" scales)

Frank Tackmann (DESY)

Level 2 in SCETlib.

Complete RGE System.

In virtuality scale μ

$$\mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)$$
$$\mu \frac{\mathrm{d}B(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_B(\mu,\nu) B(\vec{p}_T,\mu,\nu)$$
$$\mu \frac{\mathrm{d}S(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_S(\mu,\nu) S(\vec{p}_T,\mu,\nu)$$

and rapidity scale u

$$\begin{split} \nu \frac{\mathrm{d} B(\vec{p}_{T},\mu,\nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \mathrm{d}^{2}\vec{k}_{T} \,\gamma_{\nu}(\vec{k}_{T},\mu) \,B(\vec{p}_{T}-\vec{k}_{T},\mu,\nu) \\ \nu \frac{\mathrm{d} S(\vec{p}_{T},\mu,\nu)}{\mathrm{d}\nu} &= \int \mathrm{d}^{2}\vec{k}_{T} \,\gamma_{\nu}(\vec{k}_{T},\mu) \,S(\vec{p}_{T}-\vec{k}_{T},\mu,\nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_{\nu}(\vec{k}_{T},\mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_{S}(\mu,\nu) \delta(\vec{k}_{T}) = -4\Gamma_{\mathrm{cusp}}[\alpha_{s}(\mu)] \delta(\vec{k}_{T}) \end{split}$$

- plus evolution equations for $\alpha_s(\mu)$ and PDFs (μ)
- plus consistency relations between different anomalous dimensions γ_i which encode RGE consistency

Limiting scale choices.

- Solving RGE system for q_T distribution is (surprisingly) difficult
 - Exact distributional solution in q_T space is equivalent (up to different boundary terms) to solving RGE in b_T space with canonical b_T scales ($b_0 = 2e^{-\gamma_E}$)

 $\mu_H = Q$, $\mu_B = b_0/b_T$, $\nu_B = Q$, $\mu_S = \mu_{\nu} = \nu_S = b_0/b_T$

- Quite nontrivial statement, proven in [Ebert, FT; 1611.08610]
- This is level 1

Limiting scale choices.

- Solving RGE system for q_T distribution is (surprisingly) difficult
 - Exact distributional solution in q_T space is equivalent (up to different boundary terms) to solving RGE in b_T space with canonical b_T scales (b₀ = 2e^{-γ_E})

 $\mu_H = Q$, $\mu_B = b_0/b_T$, $\nu_B = Q$, $\mu_S = \mu_\nu = \nu_S = b_0/b_T$

- Quite nontrivial statement, proven in [Ebert, FT; 1611.08610]
- This is level 1
- Where is the usual μ_R "renormalization" scale? Fixed-order limit:

 $\mu_H \equiv \mu_B \equiv \mu_S \equiv \mu_R \,, \qquad \nu_B \equiv \nu_S$

- Exactly turns off resummation and gives back FO result (at leading power) $d\sigma^{(0)} = H(\mu_R)B(\mu_R)^2 S(\mu_R) = d\sigma^{FO(0)}(\mu_R)$
- ► This is what needs to happen for $q_T \sim Q$ (or more precisely when power expansion in q_T/Q is no longer justified)
- This is what we add in level 2 (turning off resummation)
- What about μ_F (PDF "factorization" scale)? I've ignored it for simplicity $B_i(x_a, \mu_B) = f_i(x_a, \mu_B) \otimes [1 + \mathcal{O}(\alpha_s(\mu_B))]$, so $\mu_F \equiv \mu_B \rightarrow \mu_R$ for $q_T \sim Q$

Profile Scales.

• Everything determined (only) by μ_i , ν_i choices: Use profile scales [Lustermans, Michel, FT, Waalewijn, 1901.03331]

 $\mu_H =
u_B = \mu_{
m FO} = Q$

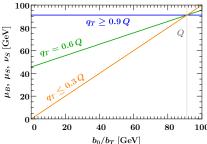
 $\mu_B, \mu_S, \nu_S \equiv \mu_{
m prof}(q_T, b_T) = \mu_{
m FO} f_{
m prof} \Big(rac{q_T}{Q}, rac{b_0}{b_T Q} \Big) egin{cases} = b_0/b_T & q_T \ll Q \ o \mu_{
m FO} & q_T o Q \end{cases}$

▶ Key point: Resummation turn off for $q_T \rightarrow Q$ does not alter correct (canonical) resummation at $q_T \ll Q$

Plus nonpert. cutoff prescription for $b_0/b_T \lesssim 1 \text{ GeV}$ (as at level 1) (freeze-out, local b^* , global b^*)

• Canonical (res. on) \rightarrow FO (res. off)

- Transition driven by q_T/Q (b_T is just means to an end, we want to predict physical q_T spectrum not the b_T spectrum)
- Transition points are chosen based on relative size of leading-power vs. nonsingular (power) corrections



Uncertainties via Scale Variations.

Assuming (pretending) that scale variations make some degree of sense

$$\Delta_{\mathrm{total}} = \sqrt{\Delta_{\mathrm{resum}}^2 + \Delta_{\mathrm{FO}}^2 + \Delta_{\mathrm{match}}^2 + \Delta_{\Lambda}^2}$$

- "Resummation" Δ_{resum}: Max envelope of profile scale variations
 - ▶ 36 variations: chosen such that all possible scale ratios get probed and changed by factor 2 (but not 4) for $q_T \rightarrow 0$
- "Fixed-order" Δ_{FO} : Max envelope of μ_{FO} by fator of 2
 - Keeps all resummed scale ratios invariant
- "Matching" Δ_{match} : Max envelope of varying transition points
 - 4 variations: Start and end of transition up and down
- "Nonpert. cutoff" Δ_{Λ} : Max envelope of cutoff variation
 - Rough guesstimate to cover missing nonpert. (would cancel cutoff dep.)
- Rationale/interpretation:
 - ▶ Think of each as a (somewhat) independent "source" \rightarrow add in quadrature
 - \blacktriangleright Within each: Arbitrary knobs all probing the same thing \rightarrow take envelope

Matching to Fixed Order.

Matching to fixed order essentially comes for free now (well, for given $\sigma^{\rm FO}$)

$$\sigma = \underbrace{\sigma^{(0)}(\mu_H, \mu_B, \nu_B, \mu_S, \nu_S)}_{\equiv \sigma^{\text{resum}}(\mu_H, \mu_B, \nu_B, \mu_S, \nu_S)} + \underbrace{\left[\sigma^{\text{FO}}(\mu_{\text{FO}}) - \sigma^{(0)}(\mu_i, \nu_i \equiv \mu_{\text{FO}})\right]}_{\sigma^{\text{nons}}(\mu_{\text{FO}})}$$

• σ^{resum} and σ^{nons} are *separately* scale independent

- They should be because for $q_T \ll Q$ they are *independent* pert. series
- Using profile scales to steer resummation inside σ^{resum} automatically keeps them cleanly separated, in particular, σ^{nons} is pure fixed order and does not depend on any resummation details

$ullet \, \sigma^{ m nons}$ is (must be) power-suppressed by q_T/Q for $q_T \ll Q$

This requires σ⁽⁰⁾ and σ^{FO} to have consistent orders, i.e., order of boundary conditions in σ⁽⁰⁾ must match order of σ^{FO}