Photo-Nuclear Physics with PERLe

Norbert Pietralla, TU Darmstadt

Nuclear Photonics

Photonuclear reactions

Conference photo
Nuclear Photonics 2018
Brasov, Romania
Generic ERL-based Light Source

from: Chris Tennant, USPAS 2011 online
ERL’s make unprecedented γ-ray beams possible:
- high flux [+ (1–3) orders of magn.],
- high energy resolution [~0.1%]

or Compton-back scattering of external laser
Outline

• Photonuclear reactions with MeV-range γ rays

• Motivation from astrophysics and particle physics

• Examples for recent achievements

• Concluding remarks
Photonuclear Reactions

What happens?

\[\gamma \]

0.1 – 100 MeV

PERLe: \(4\gamma^2E_{ph} \)
\[\sim 0.2 – 5 \text{ MeV} \]
Photonuclear Reactions

Absorption → Separation threshold → γ' → β → A'Y

Nuclear Resonance Fluorescence (NRF)
Photoactivation
Photodisintegration (-activation)
Photofission

~ 8 MeV

gs → A X → γ
Nuclear Physics with photon beams

Pure EM-interaction
- (nuclear-)model independent
- “small“ cross sections, intense beams

Minimum projectile mass
- min. angular momentum transfer,
 spin-selective: low-spin modes [E1,M1,E2,(E3?)]

Polarisation
- “Parity Physics“, channel selectivity

Narrow Bandwidth (at 4th generation LCB source)
- Explore specific excitation energy
 “Selective Manipulation of Nuclear States“:
Astrophysical Motivation
Multi-Messenger Observation of N-Star Merger

LIGO/VIRGO – collaboration, Fermi Satellite
Neutron-Star Merger in the Visible Spectrum

A star changes colour in 4 days! „Kilonova“

Light curve of neutron-star mergers due to synthesized rare-earth nuclei
Neutron-Star Mergers

Neutron-star merger:
Cosmic heavy-element nucleosynthesis

Rapid neutron-capture process and fission cycling

Nuclear dynamics govern GW signal
Cosmic Nucleosynthesis

Nuclear Chart

E1 strength: photodisintegration
M1 strength: neutrino reactions

Identified
Known half-life
r-process waiting point
Motivation from Astrophysics and Particle Physics

• Nuclear Equation of State (EoS) determines properties of neutron stars (e.g. radius) and dynamics of n-star mergers incl. GW signal.
• Constrains on density-dependence of symmetry-energy of EoS from nuclear dipole-polarizability, i.e., inversely energy-weighted E1 excitation strength from photonuclear reactions

• Fission-cycling in n-star mergers determines resulting abundance distribution
• Energy-resolved studies of photo-induced fission resonances of long-lived trans-uranium actinides

• Calibration of spin-response of neutrino-detectors and detectors for Dark-Matter searches from photonuclear reactions

• etc.
Examples of Recent Achievements
High Intensity γ-Ray Source (HlgS)

H.R. Weller, V.N. Litvinenko
Duke University, Durham, NC, U.S.A.

Compton Backscattering of Intra-cavity Laser Light

2 – 60 MeV

$E_\gamma = \frac{4\gamma^2E_{ph}}{(1 + r + \gamma^2\theta^2)}$; $r = \frac{4\gamma E_{ph}}{mc^2}$; $E_{ph} = \frac{2\gamma^2hc}{\lambda_w(1 + K_w^2/2)}$; $\gamma = \frac{E_\gamma}{mc^2}$;

nearly monochromatic, tunable, completely polarized
Looking at the Target

11B Target
5.0(2) MeV γ-ray
beam

beam monitor
Pb
Ge

5.02 MeV
3/2−
1/2−
3/2−

First NRF at HIGS 5/15/01

Count Rate (a.u.)

0 1 2 3 4 5 6
Gamma Energy (MeV)

N. Pietralla et al.

3/2− → gs

3/2− → 1/2−

3 h beam

SEP

DEP
Photonuclear Reactions for EoS

Valence-shell dependence of the pygmy dipole resonance: $E1$ strength difference in $^{50,54}\text{Cr}$

P. C. Ries,1,2 H. Pai,1,2 T. Beck,1 J. Beller,1 M. Bhike,3 V. Derya,4 U. Gayer,1 J. Isaak,1,5 B. Löher,1 Krishchayan,3 L. Mertes,1 N. Pietralla,1 C. Romig,1 D. Savran,5 M. Schilling,1 W. Tornow,3 S. Typel,1,5 V. Werner,1 J. Wilhelmy,4 A. Zilges,4 and M. Zweidinger1

1Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
2Saha Institute of Nuclear Physics, Kolkata 700064, India
3Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
4University of Cologne, Institute for Nuclear Physics, 50937 Köln, Germany
5GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany

P. C. RIES et al.

Evidence for shell-dependence of nuclear neutron skin

$^{54}\text{Cr}(\gamma,\gamma')$

@ HI\gammaS

Photon flux in arb. units
perpendicular polarized plane

Counts per keV

Energy (MeV)

Percentage exhaust of TRK

Neutron number

ΔR_p (fm)

$\delta \Delta R_p / \delta N$(fm)

Neutron number

RMF calculations
slope upto s.c.
slope above s.c.
Nuclear Structure for Neutrino Studies

Deep Underground Neutrino Experiment

DUNE LAr – detector for cosmic ν’s

$\nu + \text{Ar} \rightarrow \nu' + \text{Ar}^*$

→ total low-energy neutrino cross section
E2 decay strength of the Scissors mode

\[B(E2; 1^+_{ScM} \rightarrow 2^+_1) = 0.037(19) \text{ W.u.} \]

\[\delta = -0.07(1)_{\text{stat}}(2)_{\text{syst}} \]
Motivation for Nuclear Photonics @ PERLe

- Photons provide a sensitive probe for nuclear structure
- Properties of nuclear isotopes as a function of mass (neutron number)
- Low-energy frontier of Quantum Chromo-Dynamics
- Photonuclear reactions impact the structure and dynamics of stars
- Formation of chemical elements in the Universe
- Nuclei as detector material for neutrino experiments and searches beyond the Standard Model

→ Nuclear photonics
Physics with Photon Beams

- **Nuclear Structure Physics**
 - Nuclear single particle structure
 - Collective nuclear structures
 - Photofission

- **Particle-Physics Metrology**
 - Neutrino detectors
 - Nuclear matrix elements for $\beta\beta$-decay

- **Nuclear Astrophysics**
 - Capture / desintegration reactions
 - Nuclear synthesis

- **Applications**
 - Radiotomography of fuel rods
 - Cultural heritage, etc.

Thank you very much!