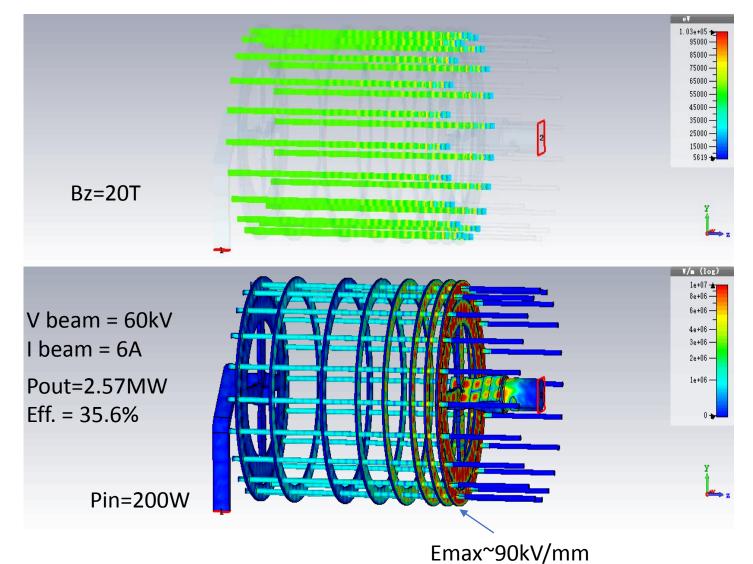
36GHz HOM MBK design status

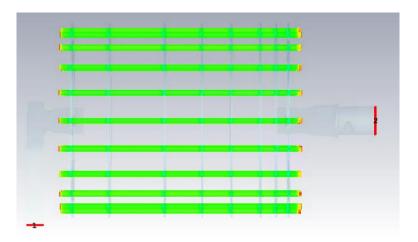
2020/06/12

Jinchi Cai, Igor Syratchev, Graeme Burt

Outline

- Beam-wave interaction analysis
- Beam optics Design

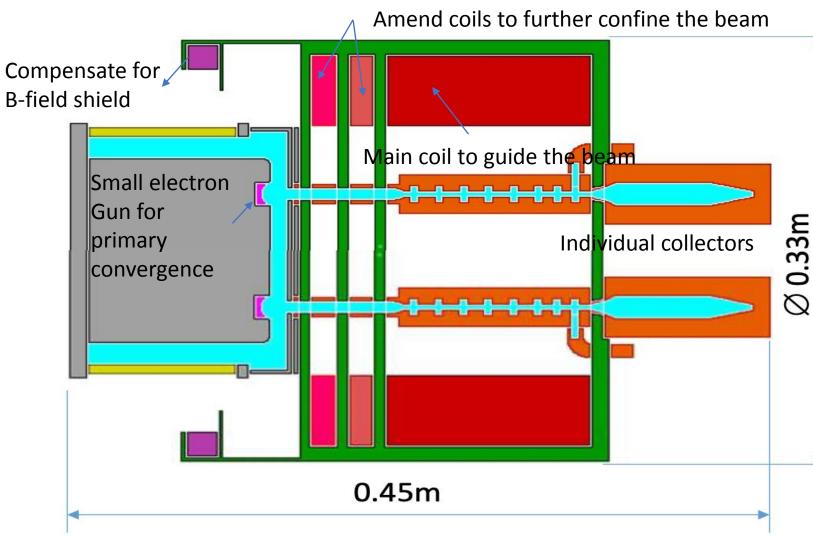

KlyC simulation results


New	Beam Para	eff. optin	nizer	Accuracy Setti	ng plot s	etting	Conv. OL	FigOff 🦲 🤇)FigOn G	iF of ▼	🗹 txt out	put	cores	4 🗖 🛞
0.000	Beam Volta	ge (kV)	60.000	Space Charge	e Field Order	8	Simulation res	sults summary						
Open	Beam Curre	ent (A)	6.000	Division Numb	per in λ_e-	256	Pout=	2418	kW Gain=	44	28 dB			=
Save	Outer Radi	us (mm)	0.800	Division Numb	per in RF	128					_	Vg (kV) 0.73	phi(d.)/	E KV/n 0.82 10
Save as	Inner Radiu	us (mm)	0.000	Max Iterations		50	Eff.RF=		% Eff.BI=		58 %	1.70		172 -0-
	Tube Radiu			Iteration Resid	lual Limit	0.001	Re.RF=	0.0009066	Re.El=	0.00034	15	5.07		5.13 Prog
Simulate			1.000	Iteration Relay		0.5	IJ1/J0I.i=	1.451	IJ1/J0].o=	1.8	75	7.36		7.44 On
S 💽 EM	Beam Num	ber	20	neration relay	auon	0.5					_	11.64		11.78
	Layer Num	ber	4				ve/c.min=	0.1906	Gama =	0.28		15.07 35.21		15.25
ower Ramp 10				Excitation source	ce		Successful it	teration Yes	pha.s=	-17	6.7 °	66.55		75.42 Off
	Reflection fro	om output		Pin (W)	degree	chirp			Tenu-		a min			Swee
age C. 1		om output	0	Pin (W) 180.000	degree 360.000	chirp 0.000	Reflected ele	ectrons No	Tcpu=	8.4	25 min	•		Swee
age C. 1			0		_			ectrons No	Tcpu=	8.4	25 min	4		RunA
nage C. 1			0		_			ectrons No	Tcpu=	8.4	25 min	4		
age C. 1 IHz) 36000.0			0		_		Reflected ele	ectrons No nose(mm)/Tp		8.4 sigma(SI)	25 min	∢ We(J)	(X,y,Z,I	RunA
age C. 1 IHz) 36000.0 rity Parameters	amp	0 degree		180.000	360.000	0.000	Reflected ele						(X,y,z,l HOMext	Ez) RunA
age C. 1 IHZ) 36000.0 rity Parameters Type Harm 0 1 1 1	amp f0(MHz) 36000 36062	0 degree R/Q (Ω) 1.0744 1.3452	M 0.5680 0.5638	180.000 ✓ Qe 840 9.7362e+04	360.000 Qin 2550 2450	0.000 z (mm) 0 16.6000	Reflected ele gap(mm)/Em 790 790	nose(mm)/Tp 0 1	Lc(mm)/MB 0 0	sigma(SI) 0 0	Rc(m		HOMext HOM10	Ez) Scale
age C. 1 IHZ) 36000.0 rity Parameters Type Harm 0 1 1 1 1	amp f0(MHz) 36000 36062 36067	0 degree R/Q (Ω) 1.0744 1.3452 1.3450	M 0.5680 0.5638 0.5637	180.000 ✓ Qe 9.7362e+04 9.7361e+04	360.000 Qin 2550 2450 2450	2 (mm) 016.6000 41.3000	Reflected ele gap(mm)/Em 790 790 790	nose(mm)/Tp 0 1	Lc(mm)/MB	sigma(SI) 0 0	Rc(m		HOMext HOM10 HOM10	Ez) RunA
age C. 1 IHZ) 36000.0 rity Parameters Type Harm 0 1 1 1	amp f0(MHz) 36000 36062 36067 36113	0 degree R/Q (Ω) 1.0744 1.3452 1.3450 1.3433	M 0.5680 0.5638 0.5637 0.5630	180.000 Image: Constraint of the second	360.000 Qin 2550 2450 2450 2450 2450	2 (mm) 0 16.6000 41.3000 58	Reflected ele gap(mm)/Em 790 790 790 790 790	nose(mm)/Tp 0 1 1 1	Lc(mm)/MB 0 0 0 0	sigma(SI) 0 0	Rc(m		HOMext HOM10 HOM10 HOM10	Ez) Scale
age C. 1 IHZ) 36000.0 ity Parameters Type Harm 0 1 1 1 1	amp 50(MHz) 36000 36062 36067 36113 36123	0 degree R/Q (Ω) 1.0744 1.3452 1.3450 1.3433 1.3429	M 0.5680 0.5638 0.5637 0.5630 0.5629	Qe 9.7362e+04 9.7355e+04 9.7355e+04	360.000 Qin 2550 2450 2450 2450 2450 2450	2 (mm) 0 16.6000 41.3000 58 71.1000	Reflected ele gap(mm)/Em 790 790 790 790 790	nose(mm)/Tp 0 1 1 1 1	Lc(mm)/MB 0 0	sigma(SI) 0 0 0 0 0 0	Rc(m		HOMext HOM10 HOM10 HOM10 HOM10	Ez) Scale
age C. 1 IHZ) 36000.0 ity Parameters Type Harm 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	amp 50(MHz) 36000 36062 36067 36113 36123	0 degree R/Q (Ω) 1.0744 1.3452 1.3450 1.3433	M 0.5680 0.5638 0.5637 0.5630 0.5629 0.5627	180.000 Image: Constraint of the second	360.000 Qin 2550 2450 2450 2450 2450	2 (mm) 0 16.6000 41.3000 58	Reflected ele gap(mm)/Em 790 790 790 790 790	nose(mm)/Tp 0 1 1 1 1 1	Lc(mm)//MB 0 0 0 0 0 0	sigma(SI) 0 0	Rc(m		HOMext HOM10 HOM10 HOM10	Ez) Scale

- ✓ The saturation output power is 2.4MW
- ✓ The saturated efficiency is 33.6%
- ✓ Gain=41dB
- ✓ Emax=67kV/mm
- ✓ -3dB bandwidth is [-22MHz, +28MHz]

- ✓ Tube is compact as a whole and could be installed quite close to the linearizer as plug-in/ plug out module
- $\checkmark\,$ Frequency tuning for each cavity will be a technical challenging
- ✓ Bandwidth is little bit narrow, which leads to 80% linearizer performance comparing with infinite bandwidth;
- $\checkmark\,$ More results will be available in coming weeks

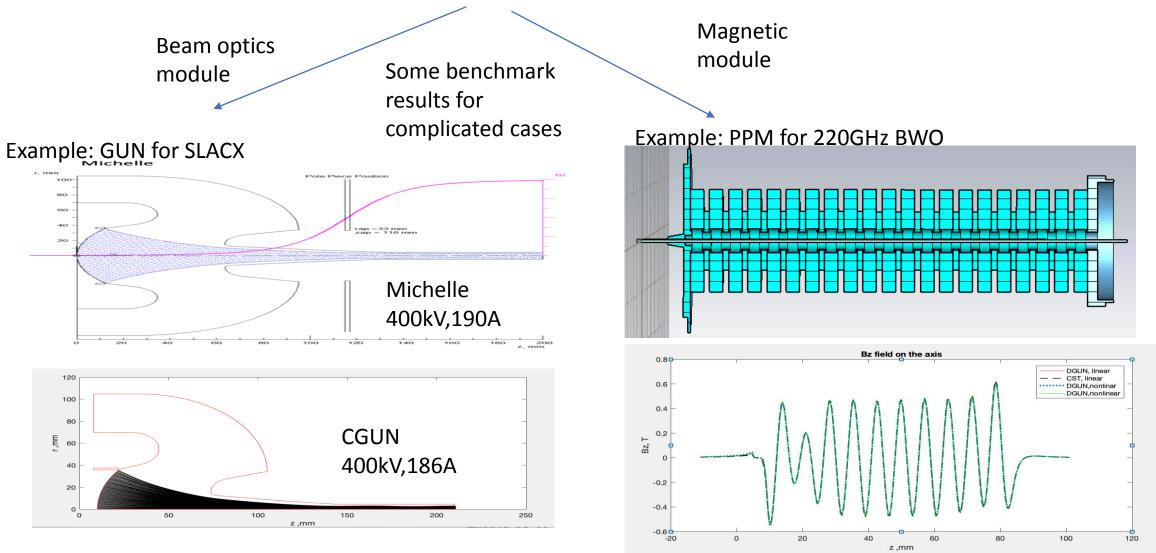
CST 3D simulations of entire 20 beams 36GHz MBK (KlyC benchmark, Bz=20T)

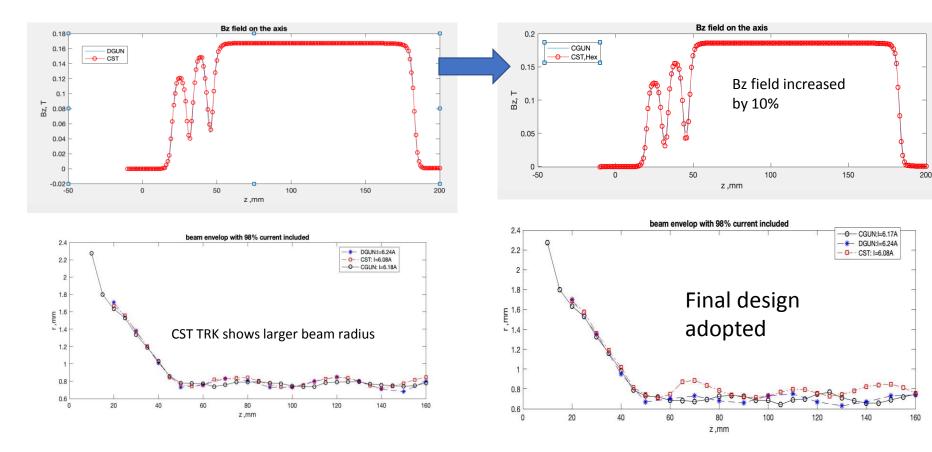


- RF circuit was optimized in KlyC.
- Input (output) coupler combiner topology provides efficient extraction of RF power into H₀₁ in the circular waveguide.
- RF circuit length 11cm.

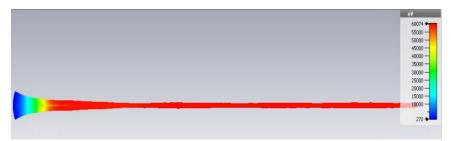
Outline

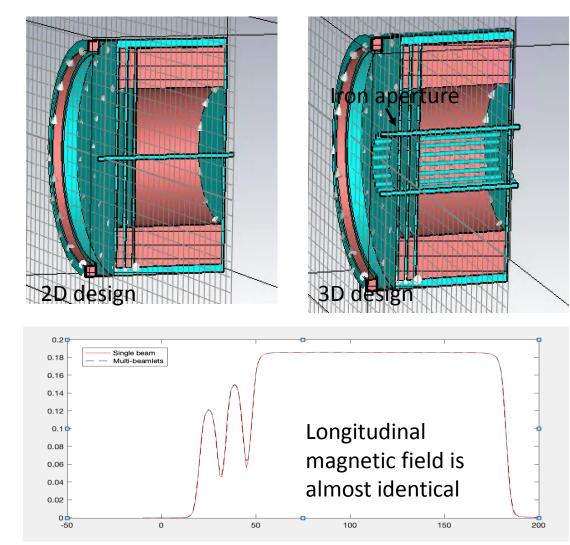
- Beam-wave interaction analysis
- Beam optics Design

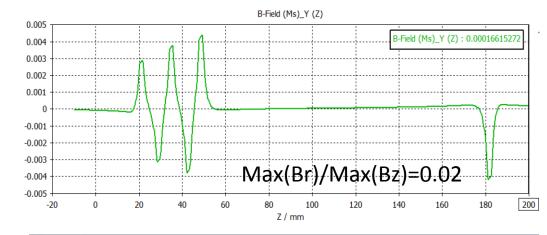

Basic Topology of the optics


- ✓ V=60kV, I=6A, r_m =0.8mm, r_c =1mm
- ✓ 20 beamlets on radial position of 38.4mm
- ✓ The radial margin for each beamlets on the cathode is 6mm;
- ✓ Limited control electrode makes double convergence necessary
- Individual collectors are used for power dissipation
- Design could be based on single beamlet if beam-beam interference and transverse magnetic field could be ignored

Simulation Tool

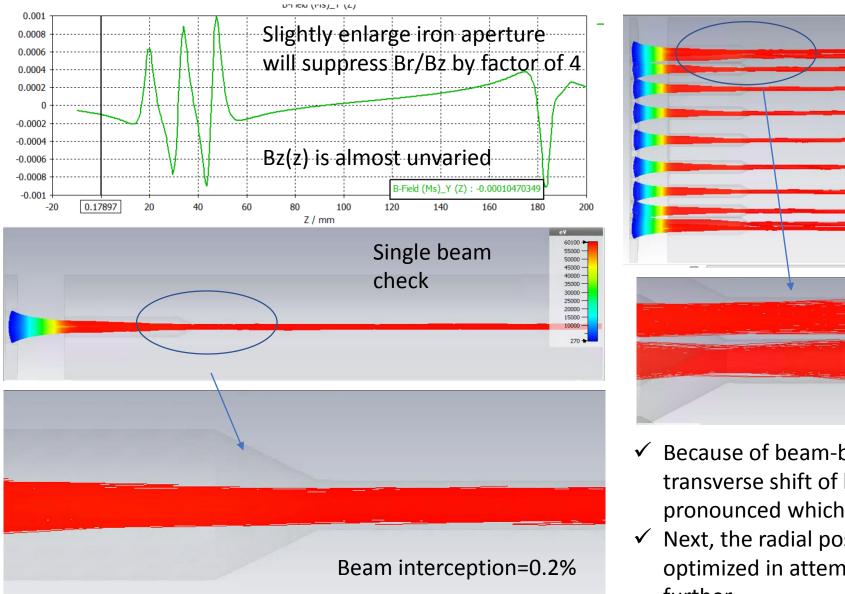

• CGUN (home-made 2D code), benchmarked with CST TRK, DGUN, Michelle...

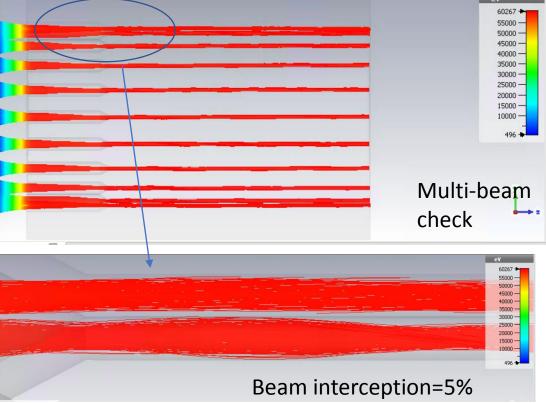

Optimization by CGUN – CERN home made tool (benchmarked with CST)



- CGUN demonstrated very good agreement with other available codes.
- Final optics tuning will be done in CST, that allows to include the MB effects.

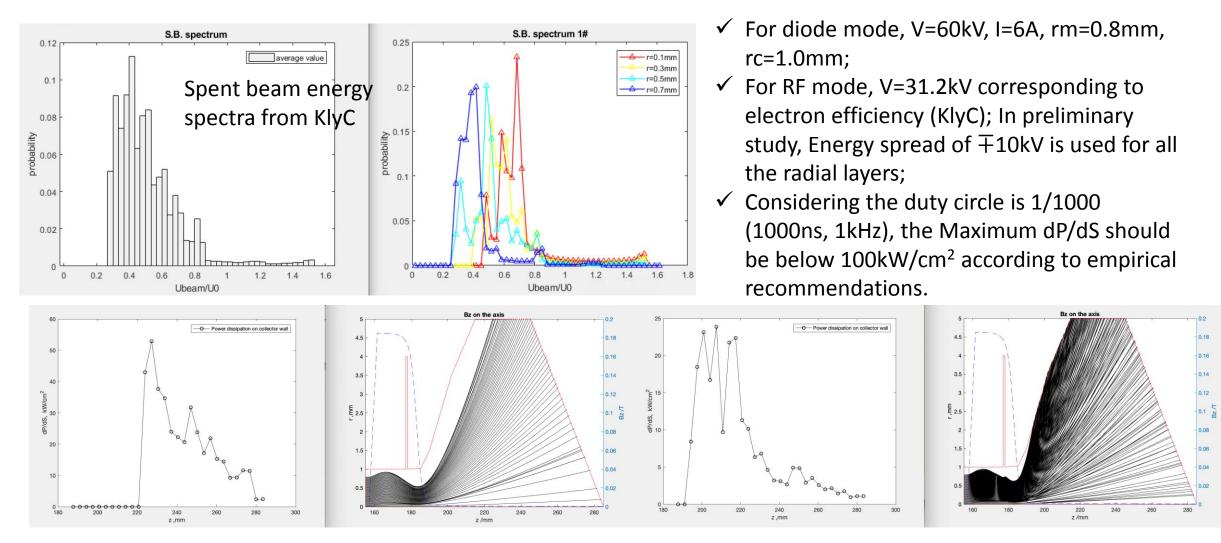
Transverse Magnetic field issues in MBK topology





25% beam interception

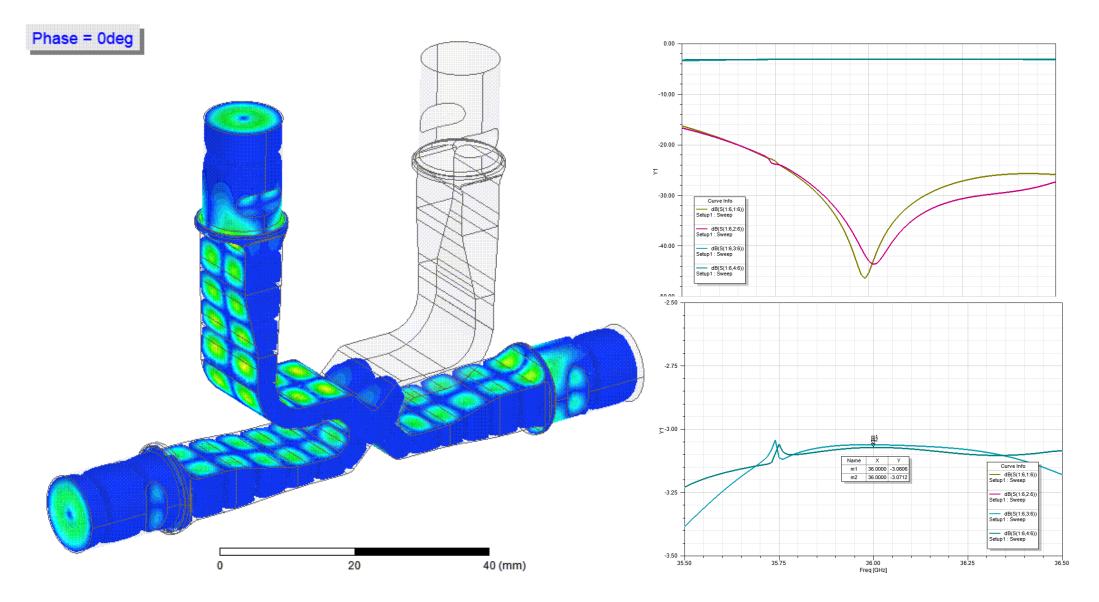
- ✓ 3D magnetic field map used for single beam simulation is done. Beam losses are heavy.
- ✓ To reduce the transverse magnetic field, the inner/outer radii of the magnet, beam apertures in the iron shields have been adjusted.


Efforts to Mitigate the transverse Magnetic field effect

- Because of beam-beam interference in GUN area, transverse shift of beamlets becomes more pronounced which leads to higher beam interception
- Next, the radial position of iron apertures will be optimized in attempt to reduce transverse B field further.

Preliminary design of the Individual Collector with KlyC/CGUN

For DC, V=60kV, I=6A, max(dP/ds)=55kW/cm².


For RF, V=31.2kV +10kV, I=6A, max(dP/ds)=25kW/cm².

36 GHz, 2.5 MW MBK parameters

Voltage: 60 kV (no oil insulation needed) N beams: 20 Current/beam: 6A Current/total: 120 A Power in saturation: 2.57MW RF efficiency: 37.5% Power gain: 41dB Bandwidth -3dB (KlyC): 50MHz Solenoidal field: ~0.2T Tube length total: 0.45m Max. Cathode current density: 9A/cm² RF pulse length (tentative): 1000 ns Max repetition rate (diode mode): <2kHz Max repetition rate (RF mode): <4kHz

Designed by Igor

3dB E01_H20 hybrid. Power head for PC and/or klystrons combiner

Summary and outlook

- CGUN code is self-developed and has been well benchmarked with other codes.
- MBK GUN and Magnetic system design are almost finished. Further optimizations are ongoing to improve the beam transmission.
- Preliminary design for Collector is done, to be checked with full tube simulation in CGUN/KlyC (required modification is almost finished).
- PIC simulation with practical beam optics imported from TRK will be done as a final verification (Cathode-RF circuit-Collector).
- Evaluation of the cooling circuit (feasibility analysis)