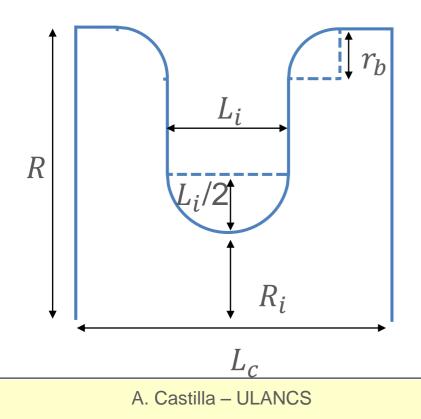


XLS – Ka Band Linearizer

A. Castilla, WP3 – D3.4 working group, Linearizer Updates- June 12th 2020.


Single Cell Recap

Simple cell, constant impedance.

A geometry is proposed.

 $H_p \approx 90$ kA/m and $E_p \approx 65$ MV/m @25MV/m.

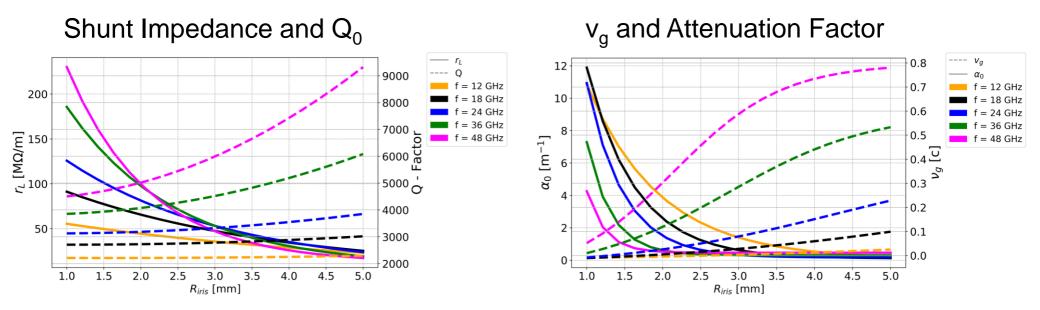
 $H_p \approx 226$ kA/m and $E_p \approx 163$ MV/m @63MV/m.

Parameter	Value	Units	
Freq.	36	GHz	
Q	4392		
r_L	106	MΩ/m	
v_g	0.12	С	
α_0	0.7	m ⁻¹	
E_p^*	2.6	MV/m	
R	3.96	mm	
R _i	2.00	mm	
$L_c (\varphi = {}^{2\pi}/{}_3)$	2.78	mm	
L _i	0.60	mm	
r_b	1.00	mm	

*normalized to $E_z = 1 MV/m$

Linearizer Updates, June 12th 2020

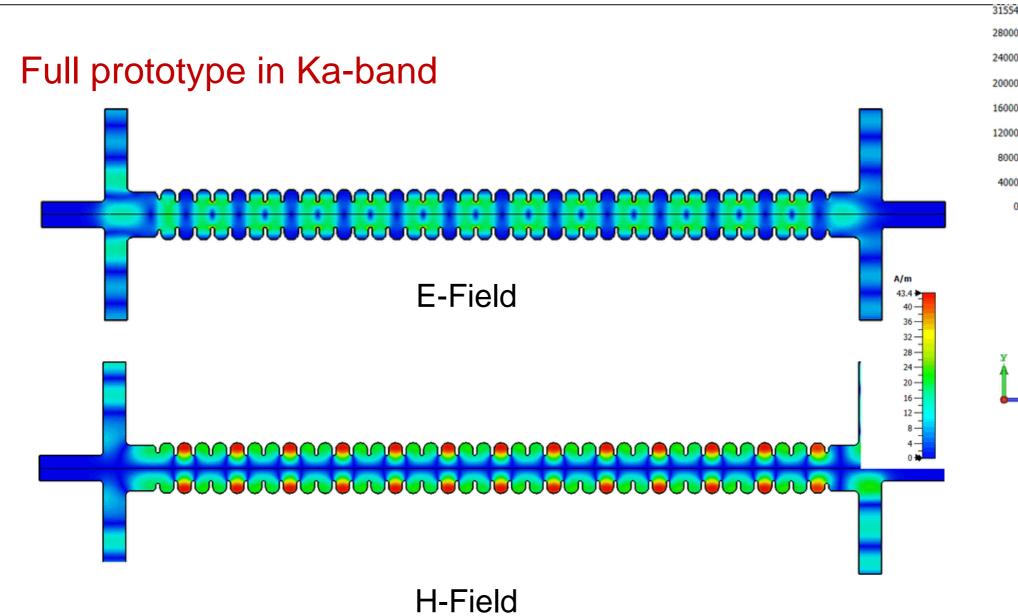
Options for a linearizer system @300 MeV


Freq. [GHz]	Iris aperture [mm]	Required voltage [MV]	Structure length [m]	Ave. gradient per cavity [MV/m]	Integrated voltage per cavity [MV/cavity]	Num. of structures [#]	Total available power [MW]
12	2.0	56.2	0.5	56.2	28.1	2	104 (2x 52)
18	2.0	25.0	0.3	83.3	25.0	1	52
24	2.0	14.1	0.2	70.5	14.1	1	44
36	2.0	6.2	0.1	62.0	6.2	1	23
48	2.5	3.5	0.1	35.0	3.5	1	14

- Changing the frequency of the injection opens some room for comparison of different frequencies.
- Ka-band seems to be in a optimal point for either choice of the injector.
- Iteration with beam dynamics undergoing, to be confirmed soon!

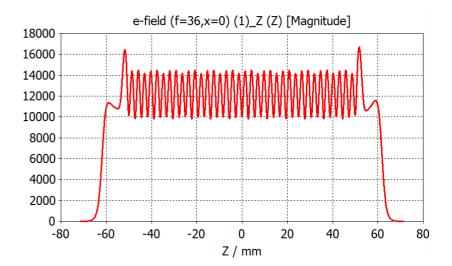
Funded by the European Union

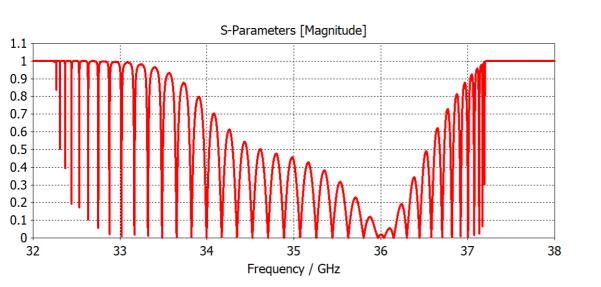
Comparing options

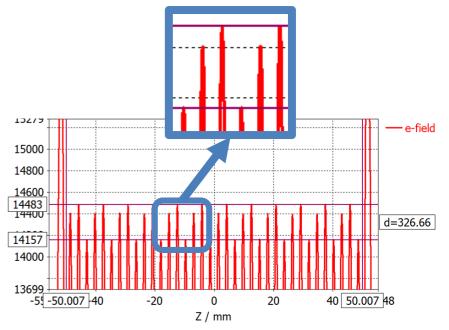


- At low apertures (≤ 2.0mm) higher freqs. show more desirable numbers, as expected.
- At around 3.5mm, lower freqs. start to show better shunt impedance than the highest freqs.
- Higher freqs. maintain lower attenuation and higher group velocity along the range.

A. Castilla – ULANCS

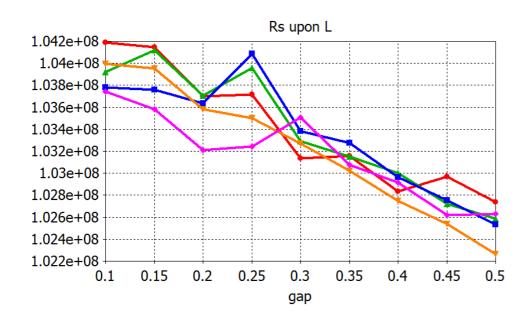


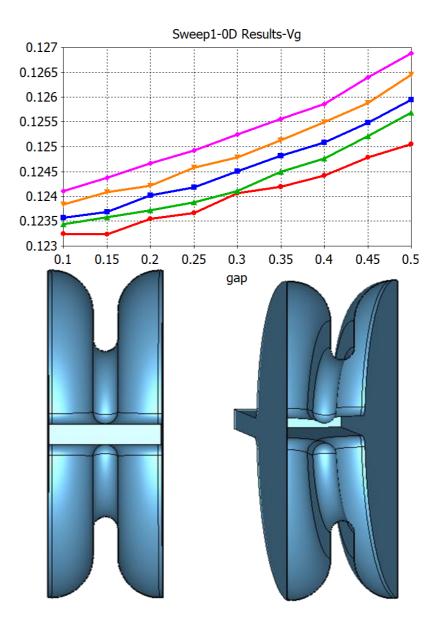

Full Structure


Decent matching.

There is still a small standing wave.

~2.5% and periodic every 3 cells (360deg).





500 um gap seems manageable with slight detrimental effect on the performance.

Full Open Structure

6.2e+09

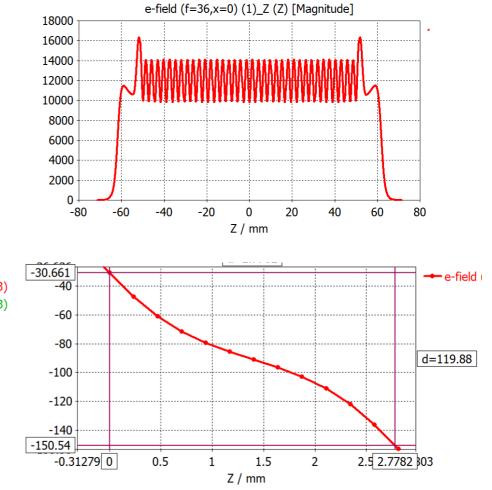
6e+09 5.8e+09 5.6e+09 5.4e+09 Highest peak E-field 5.2e+09 5e+09 on the iris corner. 4.8e+09 e-field (f=36;x=0) [1] 4.6e+09 Outside Abs 36 GHz 4.4e+09 0.5 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.1 gap Highest peak H-field on the equator-gap Sweep1-0D Results-Hpeak (A per m) 7.6e+06 edge. 7.4e+06 7.2e+06 7e+06 6.8e+06 6.6e+06 6.4e+06 6.2e+06 6e+06 5.8e+06 h-field (f=36;x=0) [1] Outside Abs 36 GHz 5.6e+06 0.35 0.15 0.2 0.25 0.3 0.4 0.45 0.5 0.1

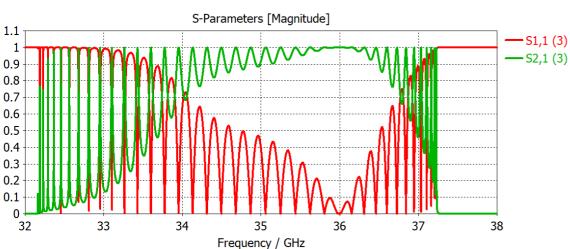
Sweep1-0D Results-Epeak (V per m)

gap

40000 - 36000 - 32000 - 28000 - 24000 - 24000 - 20000 - 16000 - 12000 - 12000 - 40000 - 40000 - 40000 - 40000 - 4000 - 40000 - 40000 - 40000 - 40000 - 40000 - 4000000 - 400000 -

58.4 ► 50 -45 -40 -35 -30 -25 -10 -5 -





Full Open Structure

Still decent matching. Proper phase advance.

<1% field flatness.

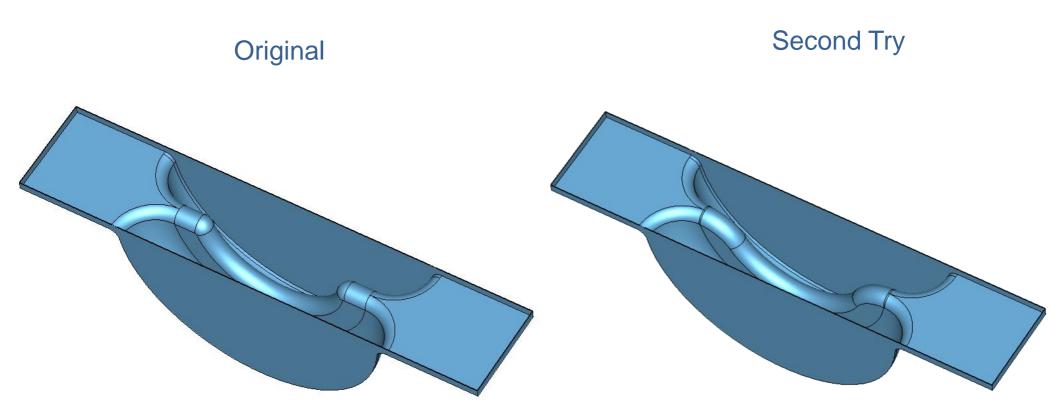
Simple vs Open

Simple

Parameter	Value	Units	
Freq.	36	GHz	
Q	4392		
r_L	106	MΩ/m	
v_g	0.123	С	
α_0	0.7	m ⁻¹	
E_p^*	2.6	MV/m	
R	3.96	mm	
R _i	2.00	mm	
$L_c (\varphi = {}^{2\pi}/{}_3)$	2.78	mm	
Li	0.60	mm	
r _b	1.00	mm	

*normalized to $E_z = 1 MV/m$

Open


Parameter	Value	Units	
Freq.	36	GHz	
Q	4344		
r_L	102.5	MΩ/m	
v_g	0.126	С	
α_0	0.69	m ⁻¹	
E_p^*	3.6	MV/m	
R	3.956	mm	
R _i	2.00	mm	
$L_c~(\varphi = {}^{2\pi}/{}_3)$	2.78	mm	
L_i	0.60	mm	
r_b	1.00	mm	

*normalized to $E_z = 1 MV/m$

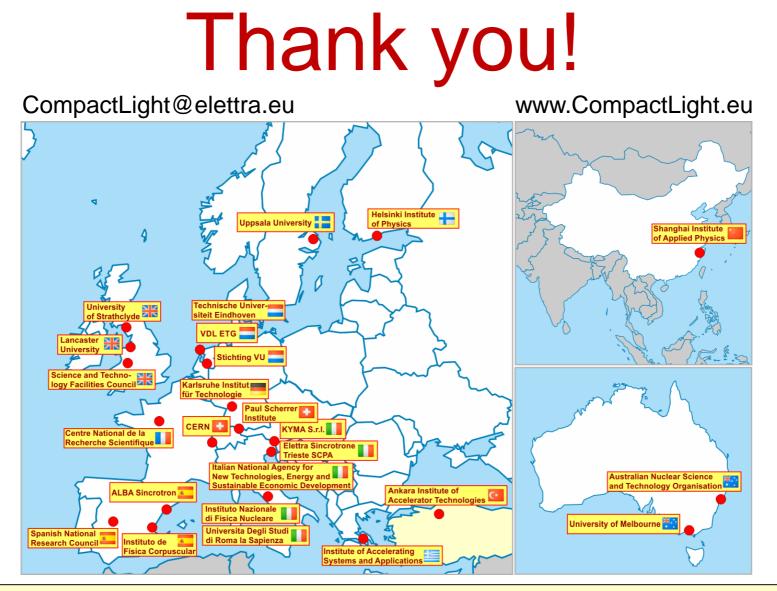
Another Go for the Open Structure

Single Vs Open 2

Simple

Parameter	Value	Units			
Freq.	36	GHz			
Q	4392				
r_L	106	MΩ/m			
v_g	0.123	С			
α_0	0.7	m⁻¹			
E_p^*	2.6	MV/m			
R	3.96	mm			
R _i	2.00	mm			
$L_c (\varphi = {}^{2\pi}/{}_3)$	2.78	mm			
L _i	0.60	mm			
r_b	1.00	mm			

*normalized to $E_z = 1 MV/m$


Open 2

Parameter	Value	Units	
Freq.	36	GHz	
Q	4357		
r_L	101.0	MΩ/m	
v_g	0.133	С	
α_0	0.65	m ⁻¹	
E_p^*	3.3	MV/m	
R	3.978		
R _i	R _i 2.00 mm		
$L_c (\varphi = {}^{2\pi}/{}_3)$	2.78	mm	
L _i	0.60	mm	
r_b	1.00	mm	

*normalized to $E_z = 1 MV/m$

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

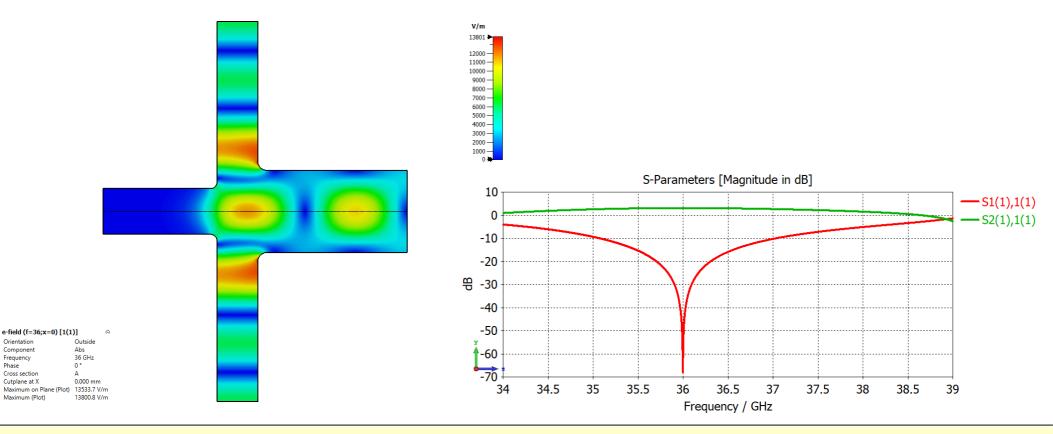
Orientation

Component

Frequency

Cross sectio

Cutplane at X


Maximum (Plot)

Phase

Coupler design

- Is a low energy linearizing stage still on the table?
 - This has been brought up a couple of times, but seems to fall into the cracks every time.

A. Castilla – ULANCS

Linearizer Updates, June 12th 2020

Structure and power considerations for the options

- Ka-band seems to be in a optimal point for either choice of the injector.
- Iteration with beam dynamics undergoing, to be confirmed soon!

Freq. [GHz]	Vg [c]	Filling time [ns]	Source output [MW]	PC gain Klystron pulse width= 700 ns	PC gain Klystron pulse width= 1500 ns	Total Power for K.p.w. 700ns [MW]	Total Power for K.p.w. 1500ns [MW]
12	0.01	333.6, (166.8)	20, 50	1.85	3.54	37, (52), 92.5, (130)	70.8, 177
18	0.01	200.1, 100.1	12	2.68, 4.39	4.67, 5.89	32.1, 52.6	56, 70.6
24	0.025	53.4, 26.7	6.7	5.68, 6.62	6.76, 7.41	38, 44.3	45.2, 49.6
36	0.12	16.7, 8.3, 5.6	3	7.05, 7.47, 7.56	7.68, 7.94, 7.97	21.1, 22.4, 22.6	23, 23.8, 23.9
48	0.3	3.3, 2.2, 1.1	2	7.69, 7.62, 7.38	8.07, 7.96, 7.68	16.1, 15.9, 14.7	16.1, 15.9, 14.7