The NA65/DsTau experiment, status and plans

Akitaka Ariga, PD Dr., University of Bern (Spokesperson)

On behalf of the DsTau Collaboration

400 GeV proton

DsTau paper: <u>10.1007/JHEP01(2020)033</u> DsTau web site: <u>https://na65.web.cern.ch/</u>

500 µm

1

The NA65/DsTau experiment at the CERN SPS

- Study of v_{τ} production for future tau neutrino experiments.
 - First measurement of **D**_s double differential production cross section
 - Reduce uncertainty of v_{τ} flux from >50% to 10% \rightarrow Fundamental input for future v_{τ} experiment: SHiP, and indirectly FASER
- Forward charm physics, charm/gluon PDF

- Principle of the experiment
 - Detection of "double-kink + charm decay" topology within 10 mm.
 - 4.6×10^9 protons, 2.3×10^8 proton interactions in target, 10^5 charm pairs, $1000 D_s \rightarrow \tau \rightarrow X$ detected events.

Impact of the ν_{τ} flux uncertainty to the SHiP ν_{τ} measurements

• There is neither data on D_s differential production xsec at 400 GeV p-N interactions \rightarrow The same situation with DONUT

- No experimental data on *n*
- The expected number of v_{τ} interactions strongly depends on n.
 - Empirical value of $n = 3.5 \pm 1.5$
 - Expected event rate varies +80% -40%
- Direct impact to v_{τ} cross section measurement!

Charm production in the BDF/SHiP

For neutrino interaction rates in SHiP detector one has to take into account also

- Detector acceptance, only forward emitted tau neutrinos intersect detector (~5% of produced v_{τ})
- Neutrino cross section, higher neutrino energy, higher cross section

The contribution from cascade production (lower energy, wide spread) is limited.

A data at 400 GeV from DsTau would provide a good representation of charm production at the BDF

Theoretical uncertainty in forward charm production

- Large theoretical uncertainty for forward charm production.
 - ex) "intrinsic charm" content of proton can affect v_{τ} flux drastically, by enhancing charm meson production in forward direction
- v_{τ} flux may change by a factor of 10

104

Emulsion based detector structure for $D_s \rightarrow \tau \rightarrow X$ measurement Kink angle of $D_c \rightarrow \tau$ decays Average 7 mrad events ×10⁸ ECC for momentum measurement events 10 units, 0.1 λ_{int} (26 emulsion films interleaved with τ Proton tagger (total 100 emulsion films) 1 mm thick lead plates) number of of D_{s} number Proton 10 15 20 25 30 Kink angle (mrad) 250 300 50 100 150 200 Transverse dimension 12.5 cm x 10 cm, 8.6 cm thick Kink angle (mrad) 1 unit (5.5 mm) Scintillation Single emulsion film Detector module Profile counter High angular resolution tracker 10 cm x 10 cm x 8.6 cm monitor 10 cm x 10 cm Proton 2 cm x 2 cm Ds beam Emulsion \rightarrow 000 Proton beam $\sigma_{\rm w} = 50 \, \rm nm$ module D **Real-time** Target mover $\sigma_{\rm A}$ = 0.35 mrad feedback (0.02°) Plastic sheet (200 μm) Emulsion film (320 µm) 1 m Plastic base (200 µm) Tungsten (0.5 mm) / Emulsion layer (70 μm) molybdenum (1 mm) plate A total of 370 modules 6 to be analyzed

• 10 % uncertainty on $u_{ au}$ flux

7

Fast readout by the HTS

- HTS: 100x faster than the scanning system of OPERA
 - Area scanning speed of 0.5 m²/h
 - Effective throughput 13 GB/s
- 97% of the pilot run films (3150 films) was already scanned

Scanning progress

Reconstruction performance: Track reconstruction

High track density (OPERA x 1000) \rightarrow New tracking algorithm Fine alignment with proton tracks, 0.4 μm position accuracy \rightarrow 0.1 mrad angular resolution for long tracks (>7mm)

Beam purity estimation

- Reconstructed data was compared to the H2 beam line simulation with the exact magnet, collimator settings → Good agreement.
- From the simulation, the contamination is expected to be less than 2 % in the angle acceptance $\theta < 2$ mrad.

Proton interaction analysis

Tracks emerging from tungsten target

Vertex density ~500/cm²/ tungsten plate

Fine detector structures are visible by reconstructed vertices.

Charged particle multiplicity at the proton interaction vertices

Angular distributions

- General distribution agrees with the FLUKA prediction.
- A deficit of forward angle (<20 mrad or $\eta > 4.6$) is observed.
- Comparisons between other generators are ongoing.

Charm candidate search, increasing statistics

- Search for double charm events
 - 34253301 protons analyzed (~2% of pilot run)
 - 272,120 proton interactions reconstructed (147,236 in tungsten)
 - 159 events (115 in tungsten) with double decay topology detected

	Observed	Expected		
Vertices in tungsten	$147,\!236$	$155,\!135$		
		Signal	Background	
Double decay topology	115	80.1 ± 19.2	$12.7{\pm}5.0$	

- We will increase statistics x50
- High precision measurement to be done for selected events

Plans

- Pilot run in 2018 (1/10 scale)
 - Emulsion readout of pilot run being completed (3150 films, 40m²)
 - So far 2% of data is analyzed \rightarrow to be completed.
 - Expect about 10,000 charm events, 80 $D_s \rightarrow \tau \rightarrow X$ events
- Physics run in 2021, 2022
 - 2+2 weeks of beam time at NA
 - Emulsion film 550 m^2
 - Expect 100,000 charm detected, $1000 D_s \rightarrow \tau \rightarrow X$ detected events
 - v_{τ} flux uncertainty to 10%

	# of modules	emulsion films (m²)
Pilot run 2018	30	49
Physics run 2021	150 *	246
Physics run 2022	190 *	312

* Change of film size is not accounted

Target materials for the physics run

- Both Tungsten and Molybdenum will be employed as target by the BDF.
- In the DsTau's physics runs, we are going employ Tungsten and Molybdenum
 0.5-mm tungsten plates, 1.0-mm molybdenum plates
 - •The same detector structure, equal number of modules for each target.
- Chemical compatibility tests has been done
 - •No problem with a contact for a short period of time needed for the DsTau irradiation

target	# of stored proton int.	with charm pair	detected $D_s \to \tau \to \mathbf{X}$
tungsten 0.5 mm	$1.08 imes 10^8$	1.95×10^5	528
molybdenum 1.0 mm	1.41×10^{8}	2.10×10^{5}	498

The total number of $D_s \rightarrow \tau \rightarrow X$ events will not change.

Molybdenum target

Preparation for physics run in 2021, 2022

New gel production facility setup

Film production facility

Larger film size $10x12.5 \rightarrow 25 \text{ cm x } 20 \text{ cm}$

HTS (0.5 m²/h) → HTS II (2.5 m²/h)

Preparation for physics run in 2021, 2022

- A beamline optics study has been done to achieve a wide beam
- A larger target mover from J-PARC E07 experiment

Data processing

- Currently the bottleneck is the data processing. Pilot run experience:
 - \simeq 2 months/module with a dedicated machine (CPU+1 GPU, 256 GB RAM)
 - Necessary data storage ≃3.2 TB/module → pilot run data of 100 TB (1 PB for physics run)
- Optimizing algorithms and available resources
 - Use of computing clusters in the collaborating institutes
 - Investigating possibilities to use the HTS scanning system as a GPU cluster (72 GPUs) during its downtime
- We would like to ask supports from CERN for the data storage/distribution, and computing.

Summary

- The last one year was devoted to the 2018 run analysis and preparation for the physics run
- 2018 run analysis
 - 97% of films were scanned
 - 159 charm pair candidate events, increasing statistics
- Major publication
 - DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS <u>10.1007/JHEP01(2020)033</u>
- Preparation for physics run
 - Target: Tungsten and Molybdenum
 - Emulsion films, target material, target mover, beam optics tuning
- Physics run in 2021-2022, 2 weeks in each year

Thank you for your attention!

The DsTau team in the pilot run in 2018

The DsTau Collaboration

Japan: Aichi U. Edu., Gifu U., Kobe U., Kyushu U, Nagoya U, Tohoku U

Romania: Institute of Space Science

Russia: JINR

Turkey: METU

Switzerland: U. Bern, CERN

22

Backup

Tau neutrinos & lepton universality test

- Tau neutrino is one of the least studied particles
 - Only a few measurements Direct v_{τ} beam: **DONUT** (DIS)

Oscillated v_{τ} : **OPERA** (DIS), **Super-K** (QE), **IceCube** (DIS).

- Lepton Universality test in neutrino scattering
 - Hints of LU violation in heavy meson decays, e.g. $\overline{B} \to \tau \nu_{\tau} D^{(*)}$. New physics in tau sector?
 - A precise measurement of v_{τ} cross-section would provide a complementary information
 - Currently cross section error >50% (DIS) due to systematic uncertainty in v_{τ} production

Concept of v_{τ} cross section measurement (accelerator based)

v_τ production study: DsTau

- Crucial to understand D_s differential production cross-section
- Need to know how many D_s mesons are emitted in which direction and which energy.

Statistic of v_{τ} detection

Uncertainty in v_{τ} xsec measurements in <u>DONUT</u>

• DONUT's result is a function of a parameter controlling D_s differential production cross section

 $\sigma_{v\tau}^{const} = 7.5(0.335n^{1.52}) \times 10^{-40} \, cm^2 GeV^{-1}$

Using PYTHIA-derived value of n=6.1 $\sigma_{v\tau}^{const} = (0.39 \pm 0.13 \pm 0.13) \times 10^{-38} cm^2 GeV^{-1}$

Need to improve both v_{τ} statistics and v_{τ} production

DsTau milestones

• 10 % uncertainty on v_{τ} flux

25

Proton beam exposure at the SPS-H2 beamline

 Emulsion detector on target mover (scanning on X)

Pilot run in 2018

- 30 modules were exposed
- $2-3 \times 10^5$ protons/spill
- $10^5 \text{ protons/cm}^2 \rightarrow 1.25 \times 10^7 \text{/module}$

 $\uparrow\,$ Factor 10 higher density than SHiP charm

• c.a. 18 million proton interactions in tungsten

2018 Pilot run: detector production

Film production facility in Bern

• 55 m² (4400 films) produced

Emulsion

↑ Film production facility in Nagoya

Base

Emulsion

Pouring emulsion gel on plastic base

A module under assembling in dark at CERN

Vacuum packing to hold alignment between films

Exposed

25

Comparison among different generators

- Implementing different hadron production generators in analysis. Their predictions are quite a bit different.
- Further investigation is required.

Future tau neutrino measurements

Opportunities to measure ν_{τ} cross section

- SHiP: high statistics v_{τ} measurement at the SPS beam dump facility
- FASER: high energy v_{τ} measurements at the LHC.
- u_{τ} cross section has influence to
- Long baseline neutrino oscillation experiments
 - DUNE, Hyper-K, SK
 - v_{τ} is background to v_e , due to $\tau \rightarrow e$
- IceCube
 - Astrophysical ν_{τ} measurement

Signal and background

• Signal $D_{s} \rightarrow \tau \text{ decay: small}$ $kink \sim 7 \text{ mrad}$ $D_{s} \qquad \tau \qquad X$ $D^{+} \qquad X$ $D_{s} \qquad \tau \qquad X$ $D_{0} \qquad \chi$ Main background: Hadron interactions of daughters of proton interactions

No nuclear fragment detected

Charged hadrons mimic kinks

Neutral hadrons mimic neutral charm decays

Detection efficiency = 20%, estimated with Pythia 8. Signal probability 2.2x10⁻⁷ /proton

Signal in DsTau : 1000

Background probability estimated by FLUKA. $P_{BG}^{charged} = 1.3 \pm 0.4 \times 10^{-9}$ / proton $P_{BG}^{neutral} = 2.7 \pm 0.8 \times 10^{-9}$ / proton

BG in DsTau : 18

New method for Ds momentum reconstruction

by Artificial Neural Network using topological variables

FL: flight length

- Difficult to measure Ds momentum directly due to short lifetime
- \rightarrow Ds momentum reconstruction by topological variables
- A Neural Network with 4 variables was trained with MC events
- Momentum resolution for $\tau \rightarrow 1$ prong decays $\Delta p/p = 20\%$

Analysis scheme for double-kink search

Came

Step 1

- Full area scanning by the fast scanning system
- Select decays with $\Delta \theta > 20$ mrad

Hyper Track Selector (HTS) Scanning speed 0.5 m²/h/layer Angular resolution ~2 mrad

Step 2

Precision measurement to detect
 Ds -> τ decay (a few mrad)

Nano-precision systems

Angular resolution ~0.3 mrad

Reconstruction performance (1): alignment

- Processing in sub-volumes
 - e.g. 1.5 cm x 1.5 cm x 30 films
- Alignment with proton beam tracks
 - Alignment accuracy better than 0.4 μm

Residual of track segments to fitted line (RMS) \simeq **0.4** μm

Reconstruction performance (2): Proton beam angle structure

- Proton beam tracks were checked in detail
 - Tracks reconstructed in 20 emulsion films, thickness of 1.1 cm

Figure 12: Distribution of the flight length for charged 1-prong topology (left) and for neutral 2-prong topology (right).

Figure 13: Distribution of the emission angle for charged 1-prong topology (left) and for neutral 2-prong topology (right).

Figure 14: Distribution of the kink angle for charged 1-prong topology (left) and the opening angle for neutral 2-prong topology (right).

Figure 15: Distribution of impact parameter of daughter tracks to the primary vertex for charged 1-prong topology (left) and for neutral 2-prong topology (right).

Requirements for batch data processing @CERN

Japan data processing machine characteristics: CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz GPU: GeForse RTX 2080 SUPER RAM: 128 GB

Rough estimation of processing time and storage resources (for 1 DsTau test data module):

Total processing time (1 CPU + 1 GPU): ~2 months

• which includes GPU-using time: ~12.5 days (~21%)

Estimated total processing time with 1 CPU only: ~550-700 days

Size of the processed data: ~6.4 TB. To be stored at CERN EOS: ~3.2 TB (?)

Processing of **300 DsTau modules** (with the data quality similar to the **test module** and using the current version of the software) within **2 years** requires:

~25 computing nodes with CPU and GPU

or ~225-290 computing nodes with CPU only.

Required CERN EOS storage resources: ~1 PB (we have 100 TB at the moment).

The full processing time estimation doesn't take into account data copying (from **EOS** to the computing nodes and back), possible network connection delays, interruptions of the processing, etc.

Checking availability of computing resources

- JINR, ISS and Bern have multipurpose computing clusters
- Investigating possibilities to use HTS as a GPU cluster (72 GPUs), when it is not used for data readout.

Plan for physics runs in 2021, 2022

500

1500

Number of detected events

1000

2000

• The exposure speed achieved in the pilot run is quick enough

Charm production cross section results

Experiment	Beam type / energy (GeV)	σ(D _s) (μb/nucl)	σ(D [±]) (μb/nucl)	σ(Dº) (μb/nucl)	σ(Λ _c) (μb/nucl)	x _F and p _T dependence: <i>n</i> and <i>b</i> (GeV/c) ⁻²
HERA-B	p / 920	18.5 ± 7.6 (~11 events)	20.2 ± 3.7	48.7 ± 8.1	-	$n(D^{0}, D^{+})_{inclusive} = 7.5 \pm 3.2$
E653	p / 800	-	38 ± 17	38 ± 13		$n(D^{0}, D^{+})_{inclusive} = 6.9^{+1.9}_{-1.8}$ $b(D^{0}, D^{+})_{inclusive} = 0.84^{+0.10}_{-0.08}$
E743 (LEBC-MPS)	p / 800	-	26 ± 8	22 ± 11		n(D) = 8.6 ± 2.0 b(D) = 0.8 ± 0.2
E781 (SELEX)	Σ ⁻ (sdd) / 600					~350 D _s ⁻ events, ~130 D _s ⁺ events (x _F > 0.15) n(D _s ⁻) = 4.1 \pm 0.3 (leading effect) n(D _s ⁺) = 7.4 \pm 1.0
NA27	p / 400		12 ± 2	18 ± 3		
NA16	p / 360		5 ± 2	10 ± 6		
WA92	π / 350	1.3 ± 0.4		8 ± 1		
E769	p / 250	1.6 ± 0.8	3 ± 1	6 ± 2		$\begin{array}{l} 320 \pm 26 \ \text{events} (\text{D}^{\pm}, \text{D}^0, \text{D}_{\text{s}}^{ \pm})_{ \text{inclusive}} \\ n(\text{D}^{\pm}, \text{D}^0, \text{D}_{\text{s}}^{ \pm})_{ \text{inclusive}} = 6.1 \pm 0.7 \\ b(\text{D}^{\pm}, \text{D}^0, \text{D}_{\text{s}}^{ \pm})_{ \text{inclusive}} = 1.08 \pm 0.09 \end{array}$
E769	π^{\pm} / 250	2.1 ± 0.4		9 ± 1		$\begin{array}{l} 1665 \pm 54 \text{events} (\text{D}^{\pm}, \text{D}^{0}, \text{D}_{\text{s}}^{\pm})_{ \text{inclusive}} \\ n(\text{D}^{\pm}, \text{D}^{0}, \text{D}_{\text{s}}^{\pm})_{ \text{inclusive}} = 4.03 \pm 0.18 \\ b(\text{D}^{\pm}, \text{D}^{0}, \text{D}_{\text{s}}^{\pm})_{ \text{inclusive}} = 1.08 \pm 0.05 \end{array}$
NA32	π/230	1.5 ± 0.5		7 ± 1		

(Results from LHCb at \sqrt{s} = 7, 8 or 13 TeV are not included since the energies differ too much)

No experimental result effectively constraining the D_s differential cross section at the desired level or consequently the v_{τ} production

Status of the DsTau project

- Letter of Intent, Feb. 2016
 - Beam tests in Nov. 2016, May 2017
- Proposal (SPSC-P-354), Aug. 2017
- Presentation at the 128th Meeting of the SPSC (open session):
- Reviewed during the SPSC meeting, Jan. 2018

 \rightarrow "The 2018 run has been approved and the Committee recommends that the beam time requested for 2021 will be granted."

Study of tau-neutrino production at the CERN SPS

S. Aoki¹, A. Ariga², T. Ariga^{2,3,*}, E. Firu⁴, T. Fukuda⁵,
Y. Gornushkin⁶, A. M. Guler⁷, M. Haiduc⁴, K. Kodama⁸,
M. A. Korkmaz⁷, U. Kose⁹, M. Nakamura⁵, T. Nakano⁵,
A. T. Neagu⁴, H. Rokujo⁵, O. Sato⁵, S. Vasina⁶,
M. Vladymyrov², M. Yoshimoto¹⁰

Collaboration

CERN-SPSC-2017-029 / SPSC-P-354 29/08/2017

CERN

Japan: Aichi University of Education Kobe University Kyushu University Nagoya University

Romania: Institute of Space Science

Russia: JINR-Joint Institute for Nuclear Research

Switzerland: University of Bern

Turkey: METU-Middle East Technical University

A piece of data

Tracks 1 mm x 1 mm

Tracks emerging from tungsten target

Event displays

45

Event displays

cand_20190117_p11_61598.3_47632.7 C1+C1 candidate

500

cand_20190117_p11_61427.6_56633.2 C1+N2 candidate

Emulsion detector

A minimal detector: Silverbromide (AgBr) Cristal

- diameter = 200 nm
- core-shell structure
- detection eff. = 0.16/crystal
- noise rate = 0.5x10⁻⁴/crystal

12.5 cm x 10 cm

Emulsion layer (44µm)

Emulsion layer (44µm)

TAC base

 $(200 \mu m)$

• volume occupancy = 30%

10¹⁴ crystals in a film

Nucl. Instrum. Methods A 556 80 (2006)

Intrinsic resolution of emulsion detector

- Precision measurement of hits (5nm)
- Deviation of grains from a fit line
- Resolution was found to be 50 nm
 - 0.35 mrad angular resolution

High precision measurement of track angles

- Intrinsic resolution of each grain = 50 nm
 - Two grains on top and bottom of 200 μm base $\rightarrow 0.35$ mrad
 - Discrimination of 2 mrad at 4σ level
- A high precision system with a Piezo-based Z axis developmented

Piezo objective scanner

Efficiency of $D_s \to \tau \to X$ detection

Selection	Total efficiency (%)
(1) Flight length of $D_s \ge 2$ emulsion layers	77
(2) Flight length of $\tau \ge 2$ layers & $\Delta \theta(D_s \rightarrow \tau) \ge 2$ mrad	43
(3) Flight length of D _s < 5 mm & flight length of τ < 5 mm	31
(4) $\Delta \theta(\tau) \ge 15 \text{mrad}$	28
(5) Pair charm: 0.1 mm < flight length < 5 mm (charged decays with $\Delta \theta$ > 15 mrad or neutral decays)	20

1

 X_{F}

Estimation of parameter *n* for DONUT reevaluation

Unfolding of the reconstruction xF distribution to be applied (method will be investigated)