Alberto Mengoni, on behalf of the n_TOF Collaboration

1. Nuclear astrophysics

2. Advanced nuclear technologies

3. Basic nuclear science & applications

INTC, 24 June 2020

Alberto Mengoni, on behalf of the n_TOF Collaboration

1. Nuclear astrophysics

nucleosynthesis of the heavy (Z>26) elements stellar evolution primordial nucleosynthesis (BBN)

Alberto Mengoni, on behalf of the n_TOF Collaboration

2. Advanced nuclear technologies

Fission reactors (ADS, Gen-IV) Nuclear Data for Fusion applications Transmutation of nuclear waste Neutron capture therapy

Alberto Mengoni, on behalf of the n_TOF Collaboration

nuclear interactions nuclear structure effects in fission high energy nuclear reactions

3. Basic nuclear science & applications

Alberto Mengoni, on behalf of the n_TOF Collaboration

1. Nuclear astrophysics

2. Advanced nuclear technologies

3. Basic nuclear science & applications

s-process

Cu

Ni

Co

Fe

The lifetime of a nucleus against (n,γ) is:

$$\tau_{n,\gamma} \equiv \frac{1}{N_n \langle \sigma_{n,\gamma} v \rangle}$$

For $\sigma_{(n,\gamma)} \approx 100$ mb and $kT \approx 30$ keV, it is:

The canonical s-process

Abundances in the solar system

MACS-30

https://exp-astro.de/kadonis1.0/

276 nuclides

154 nuclides with $\Delta \sigma > 5\%$

69 nuclides with $\Delta \sigma > 10\%$

16 nuclides with $\Delta \sigma > 20\%$

MACS-30 - evaluated experimental data in KADONIS-1.0

MACS-30

https://exp-astro.de/kadonis1.0/

uncertainty

Evaluated data files cannot solve the problem of the accuracy of neutron cross sections data

n_TOF can!

(*) exception: 63 Ni, t_{1/2} = 100 yr first measurement at n_TOF C Lederer-Woods et al., PRC **89** (2014)

5% range n_TOF measurement 1.4 1.2 0.8 0.6 50 100 150 200 0

MACS-30 - evaluated experimental data in KADONIS-1.0

mass number A

Better MACS-30 means more

Reducing the uncertainty in the MACS is not only a question of better nuclear data: higher accuracy in the reaction rates opens the possibility to investigate new astrophysical scenarios

[nuclear clocks, constrains on the BBN, AGB modeling, nucleosynthesis conditions in explosive scenarios, others]

Accurate cross section data are key to:

1. Nuclear astrophysics

2. Advanced nuclear technologies

3. Basic nuclear science & applications

2. Advanced Nuclear Technologies

"Several parameters, particularly safety parameters of reactors and other nuclear facilities, need to be known with a precision well below 0.1% resulting in **nuclear data precisions better than a few percent, some times better than 2%, and this is a serious challenge**. In other cases the precision needed can range from 5 to 20% but the isotope or material to be measured is highly radioactive or very scarce raising a different but also important challenge."

cit. "SUPPLYING ACCURATE NUCLEAR DATA FOR ENERGY AND NON-ENERGY APPLICATIONS – SANDA", EU H2020 Nuclear Data Project, started in September 2019 (4 years duration)

Resonance Integrals: capture

~ 00

Data source: S Mughabghab, Atlas of Neutron Resonances (2006)

Resonance Integrals: fission

Data source: S Mughabghab, Atlas of Neutron Resonances (2006)

Conclusion-1

There is enough "raw material" for building up a strong experimental program for the

n_TOF Phase-2021

- Commissioning
- New experimental proposals

Phase-2021: Commissioning

Group	Task
EN-STI + groups from ATS and HSE	Coordination of the facility, target systems and technical components, collimators, R2E and R2M for NEAR
	Extraction, optics, p-beam parameters, SEM, VISTAR
	Alignment, DAQ
	Radiation measurements in the target area (and in the EARs)
n_TOF Collaboration	n-flux, beam profile, background conditions, beam resolution, new detectors

A joint CERN groups + n_TOF Collaboration WG forming

Phase-2021: New proposals

reaction	field of interest	note
^{94,95,96} Mo(n,γ)	 – s-process AGB stars, SiC grains – fp, fuel alloys 	stable samples (*)
⁹⁴ Nb(n,γ)	 anomalies in pre-solar grains strong contributor to the long-term radiotoxicity among fp 	radioactive sample $t_{1/2} = 20$ ka
⁷⁹ Se(n,γ)	 s-process thermometer strong contributor to the long-term radiotoxicity among fp 	radioactive sample $t_{1/2} = 300 \text{ ka}$
^{50,53} Cr(n,γ)	 criticality safety (major element in stainless steel) 	stable samples
⁴⁰ K(n,p) ⁴⁰ K(n,α)	 radiogenic heating in earth-like exoplanets (destruction vs production mechanisms) 	stable samples

continue...

(*) part of a EU H2020 nuclear data project

Phase-2021: New proposals

reaction	field of interest	note
²³⁹ Pu(n, γ) and α -ratio	 advanced nuclear technologies 	radioactive sample $t_{1/2} = 24.1$ ka (*)
$n + d \rightarrow p + 2n$	– nn scattering length	basic nuclear physics application
²⁴³ Am(n,f)	- contributes to production of ²³⁹ Pu (by $\alpha + \beta^{-}$ decays)	radioactive sample $t_{1/2} = 7364 a$
()		under discussion

(*) part of a EU H2020 nuclear data project

Program for Phase-2021: NEAR

during the design studies of the new shielding around the target station...

the opportunity for a new near-target experimental area appeared (NEAR station)

Program for Phase-2021: NEAR

WG on the NEAR station established

collect infos & ideas, provide technical specs for collimation feasibility of activation measurements, others

example of simulations of the neutron beam in the NEAR area in comparison to the new ChipIr facility at ISIS(*)

(*)D Chiesa et al., NIMA 902 (2018) 14

Program for Phase-2021

Proposals to INTC

Commissioning: November 2020 New experiments: November 2020 & February 2021

The End

alberto.mengoni@cern.ch

Additional material

Phase-2021: Commissioning

purpose	detectors in EAR1	detectors in EAR2
neutron flux small/large collimators	SiMON, MGAS, PTB chamber PPACs, MGAS	Simon-2D, MGAS, PPACs MGAS, PPACs
beam profile small/large collimators	CR39, PPACS	SIMON-2D, XYMGAS, PPAC, CR39 PPAC, CR39, MGAS
beam resolution	C6D6 (L6D6, Bicron), TAC	C6D6 (Bicron, L6D6)
background conditions	C6D6, TAC, i-TED	CR39, C6D6, MGAS (³ He, TLDs, ⁶ Li-glass, Timepix BC501)
tests for new detectors	LaBr ₃ , NaI, CsI-Si, new-SiMON, HPGe	LaBr ₃ , LaCl ₃ , CeBr ₃ , NaI, CsI/Si arrays, new detectors

(n,y) on Molybdenum

Applications in nuclear astrophysics include studies to interpret traces of s-process pollution in SiC grains and by providing strong constrains on the main s-process component in AGB stars (C-13 pocket).

Mo isotopes are currently found in nuclear reactors as fission products or in Mo-alloys in research or naval or space reactors. Moreover, in nuclear cycle Mo isotopes are taken into account in criticality safety studies for transport casks or irradiated fuel storage (use in burnup credit) or in reprocessing plants (for example: UPu-MoZr deposits in reprocessing plant <u>equipment</u>).

additional: ⁹²Mo(n,p) in NEA/HPRL

⁹⁴ Rh	⁹⁵ Rh	⁹⁶ Rh	97 _{Rh}	⁹⁸ Rh	⁹⁹ Rh	100 _{Rh}	¹⁰¹ Rh	¹⁰² Rh
25.80 s	5.02 m	9.90 m	30.70 m	8.72 m	16.10 d	20.80 h	3.30 a	206.94 d
⁹³ Ru	⁹⁴ Ru	⁹⁵ Ru	⁹⁶ Ru	97 _{Ru}	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru
59.70 s	51.80 m	1.64 h	5.54	2.79 d	1.87	12.76	12.6	17.06
⁹² Tc	⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Тс	⁹⁷ Тс	⁹⁸ Тс	⁹⁹ Тс	¹⁰⁰ Tc
4.25 m	2.75 h	4.88 h	20.00 h	4.28 d	4.21 Ма	4.20 Ма	211.1 г ка	15.80 s
91 _{Mo}	⁹² Mo	⁹³ Mo	⁹⁴ Мо	⁹⁵ Мо	⁹⁶ Мо	⁹⁷ Мо	⁹⁸ Мо	⁹⁹ Mo
15.49 m	14.84	4.00 ka	9.25	15.91	16.68	9.55	24.13	2.75 d
⁹⁰ Nb	⁹¹ Nb	⁹² Nb	⁹³ Nb	⁵⁴ Nb	⁵⁵ Nb	⁹⁶ Nb	97 _{Nb}	⁹⁸ Nb
14.60 h	680.04 a	34.70 Ma	100	20.30 ka	34.95 d	23.35 h	1.20 h	2.86 s
⁸⁹ Zr	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	- ³³ Zr	⁹⁴ Zr	. ⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr
3.27 d	51.43	11.22	17.15	1.53 Ma	17.38	64.03 d	2.8	16.74 h
⁸⁸ Y	⁸⁹ Y	90 _Y	91 _Y	92γ	93γ	94 _Y	95γ	96 _Y
106.62 d	10.	2.67 d	58.51 d	3.54 h	10.18 h	18.70 m	10.30 m	5.34 s
⁸⁷ Sr	⁸⁸ Sr	⁸⁹ Sr	⁹⁰ Sr	⁹¹ Sr	⁹² Sr	⁹³ Sr	⁹⁴ Sr	⁹⁵ Sr
7	82.58	50.57 d	28.90 a	9.63 h	2.66 h	7.42 m	1.25 m	23.90 s
⁸⁶ Rb 18.64 d	⁸⁷ Rb 49.69x10 ⁹ y	⁸⁸ Rb 17.77 m	⁸⁹ Rb 15.15 m	⁹⁰ Rb 2.63 m	⁹¹ Rb 58.40 s	⁹² Rb 4.49 s	⁹³ Rb 5.84 s	⁹⁴ Rb 2.70 s

(n,γ) on Molybdenum

²³⁸U(n,n')

high(est) priority in the NEA/HPRL

feasible with our new HPGe?

Progress in Nuclear Energy 106 (2018) 372-386

Table 15

Top nuclide-reaction contributors to the uncertainty for the control and safety rods movement effect; the given signs reflect the corresponding ISC sign.

CR_SHIFT		SR_SHIFT	
Reaction	Δρ/ρ [%]	Reaction	Δρ/ρ [%]
${}^{238}U_{inel}\\ {}^{239}Pu \ \overline{\nu}\\ {}^{238}U_{el-inel}\\ {}^{206}Pb_{inel}\\ {}^{239}Pu_{inel}$	$\begin{array}{rrrrr} + 4.1 \ \pm \ 0.6 \\ + \ 0.8 \ \pm \ 0.0 \\ - \ 0.7 \ \pm \ 0.1 \\ + \ 0.6 \ \pm \ 0.0 \\ + \ 0.6 \ \pm \ 0.0 \end{array}$	${}^{208}\text{Pb}_{el}$ ${}^{238}\text{U}_{inel}$ ${}^{239}\text{Pu}_{capt}$ ${}^{239}\text{Pu}_{inel}$ ${}^{57}\text{Fe}_{el}$	$\begin{array}{rrrrr} +2.9 \ \pm \ 0.7 \\ +2.1 \ \pm \ 4.2 \\ +1.9 \ \pm \ 0.1 \\ +1.8 \ \pm \ 0.7 \\ +1.6 \ \pm \ 0.2 \end{array}$

4+

2+

0+

MACS-30

https://exp-astro.de/kadonis1.0/

MACS-30 - evaluated experimental data in KADONIS-1.0

154 nuclides with $\Delta \sigma > 5\%$

276 nuclides

69 nuclides with $\Delta \sigma > 10\%$

16 nuclides with $\Delta \sigma > 20\%$

Program for Phase-2021

abundances data from Anders & Grevesse (1989)

Better MACS-30 means more

nature

Article Published: 23 October 2019

Identification of strontium in the merger of two neutron stars

Darach Watson 🖂, Camilla J. Hansen, Jonatan Selsing, Andreas Koch, Daniele Malesani, Anja C. Andersen, Johan P. U. Fynbo, Almudena Arcones, Andreas Bauswein, Stefano Covino, Aniello Grado, Kasper E. Heintz, Leslie Hunt, Chryss Kouveliotou, Giorgos Leloudas, Andrew J. Levan, Paolo Mazzali & Elena Pian

Nature574, 497–500(2019)Cite this article5365Accesses419AltmetricMetrics

nucleosynthesis in neutron star mergers

⁸⁷ Nb	⁸⁸ Nb	⁸⁹ Nb	⁹⁰ Nb	91 _{Nb}	92 _{Nb}	⁹³ Nb
3.75 m	14.55 m	2.03 h	14.60 h	680.04 a	34.70 Ma	100
β ⁺	β ⁺	β ⁺	β ⁺	β ⁺	β ⁺	266 mb
⁸⁶ Zr	⁸⁷ Zr	⁸⁸ Zr	⁸⁹ Zr	⁹⁰ Zr	⁹¹ Zr	⁹² Zr
16.50 h	1.68 h	83.40 d	3.27 d	51.45	11.22	17.15
β ⁺	β ⁺	β ⁺	β ⁺	19.4 mb	60 mb	33 mb
85γ 2.68 h β ⁺	S_4.74 h β*	∫ <mark>y8</mark> γ 3.38 d β*	88γ 106.62 d β	⁸⁹ ү 100 19 mb	90γ 2.67 d β ⁻	91γ 58.51 d β ⁻
⁸⁴ Sr	⁸⁵ Sr	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr	⁸⁹ Sr	⁹⁰ Sr
0.56	64.84 d	9.86	7	82.58	50.57 d	28.90 a
368 mb	β ⁺	64 mb	92 mb	6.2 mb	19 mb, β ⁻	β ⁻
⁸³ Rb	⁸⁴ Rb	⁸⁵ Rb	⁸⁶ Rb	⁸⁷ Rb	⁹ Rb	⁸⁹ Rb
86.20 d	33.10 d	72.17	18.64 d	49.69x10 ⁹ y	17.771	15.15 m
β ⁺	β ⁺	234 mb	202 mb, β ⁻	15.7 mb, β ⁻	β ⁻	β ⁻
⁸² Kr	⁸³ Kr	⁸⁴ Kr	⁸⁵ Kr	⁸⁶ Kr	8γr	⁸⁸ Kr
11.58	11.49	57	10.72 a	17.3	1.27 h	2.84 h
90 mb	243 mb	38 mb	55 mb, β ⁻	3.4 mb	β ⁻	β ⁻
⁸¹ Br 49.31 239 mb	⁸² Br 1.47 d β ⁻	⁸³ Br 2.40 h β ⁻	⁸⁴ Br 31.80 m β ⁻	⁸⁵ Br 2.90 m β ⁻	55.01 s (-D10	55.65 s CESS