Nuclear moments of excited states in neutron rich Sn isotopes studied by on-line PAC

H. Haas^{1,2}, G. Georgiev³, J.G. Correia^{4,2}, A. Andreyev⁵, D.L. Balabanski⁶, J. Benito⁷, Y.Y. Cheng⁸, K. Chrysalidis², T.T. Dang⁹, A.S. Fenta¹, V. Fedosseev², L.M. Fraile⁷, D. Galaviz¹⁰, T.J. Gray¹¹, Y. Ichikawa¹², K. Johnston², A. Kusoglu¹³, J. Ljungvall³, D.C. Lupascu⁹, B.A. Marsh², T.J. Mertzimekis¹⁴, L.V. Rodriguez¹⁵, J. Röder^{1,2}, J. Schell^{9,2}, C. Sotty¹⁶, A.E. Stuchbery¹¹, A. Takamine¹⁷, H. Ueno¹⁷, S.G. Wilkins², D.T. Yordanov³

¹University of Aveiro, Portugal; ²CERN; ³IJC Lab, Orsay, France; ⁴C2TN, Universidade de Lisboa, Portugal; ⁵University of York, UK; ⁶ELI-NP, Bucharest, Romania; ⁷Complutense University, Madrid, Spain; ⁸Shanghai Jiao Tong University, Shanghai, China; ⁹CENIDE, Univ. Duisburg-Essen, Germany; ¹⁰LIP, Lisbon, Portugal; ¹¹The Australian National University, Canberra, Australia; ¹²Kyushu University, Japan; ¹³University of Istanbul, Turkey; ¹⁴Univ. of Athens, Greece; ¹⁵Max-Planck-Institut für Kernphysik, Heidelberg, Germany; ¹⁶Horia Hulubei National Institute, Bucharest, Romania; ¹⁷RIKEN Nishina Center, Japan

> Spokespersons: Heinz Haas (heinz.haas@cern.ch), and Georgi Georgiev ([georgi.georgiev@csnsm.in2p3.fr\)](mailto:georgi.georgiev@csnsm.in2p3.fr)

Local contact: Karl Johnston [\(karl.johnston@cern.ch](mailto:liam.gaffney@cern.ch))

Nuclear moments – Why?

Magnetic dipole and electric quadrupole moments

 \circ Sensitivity towards single-particle and collective properties of the nuclei

$$
\vec{\mu} = \sum_{k=1}^{A} g_{\ell}^{(k)} \vec{\ell}^{(k)} + \sum_{k=1}^{A} g_{s}^{(k)} \vec{s}^{(k)}
$$

$$
2 \mathsf{Q} = e^{\pi} \sum_{p=1}^{Z} \overline{(3z^2 - r^2)} + e^{\nu} \sum_{n=1}^{N} \overline{(3z^2 - r^2)}
$$

Free-nucleon vs. effective g factors

 \checkmark valence particle configuration; \checkmark core polarization (M1 excitations); \checkmark purity of the wave function

additivity rule

$$
g = \frac{g_1 + g_2}{2} + \frac{g_1 - g_2}{2} * \frac{I_1(I_1 + 1) - I_2(I_2 + 1)}{I(I + 1)}
$$

Free-nucleon vs. effective charge

$$
e^{\pi} = 1e
$$

$$
e^{\nu} = 0
$$

$$
e^{\pi} = (1 + \Delta e^{\pi})e
$$

$$
e^{\nu} = e^{\nu}e
$$

$$
e^{\nu} = e^{\nu}e
$$

Single-particle case

$$
Q_{\rm I}=\frac{2j+1-2n}{2j-1}Q_{\rm j}
$$

 \checkmark valence orbital occupation n; \checkmark collective properties; \checkmark nuclear deformation additivity: I_1 x I_2 coupling, simple addition if stretched

The area of the present proposal – neutron-rich Sn

• Most **nuclear moments of the single-particle states** have been determined, primarily by COLLAPS [D.T. Yordanov et al., Comm. Phys. 3, 107 (2020)]

 μ for heavier $s_{1/2}$ not **measurable !**

Subject of the present proposal: two-quasi-particle states

Probing the interaction between the **neutron** *h11/2*, *d3/2* and *s1/2* orbitals **at Z=50**

The magnetic dipole and electric quadrupole moments of the 5- , 7- and 10⁺ states in a chain of Sn isotopes would provide a very stringent test of the nuclear models and demonstrate simple textbook concepts of nuclear physics

 \rightarrow does the **simple SM picture** work or what could we learn?

indirect information on s1/2 moments through 5 - states !

Unexpected results from RIKEN on ¹³⁰Sn 10⁺

- Gyromagnetic factors of the 11/2⁻ states (also including the 10⁺ in ¹¹⁶Sn) are quasi constant over the large range of neutron numbers. The only exception 10⁺ in ¹²⁸Sn (reported with a large error-bar). They are all very close to the effective Schmidt line $(g_s = 0.7 * g_s^{\text{free}})$
- Different theoretical calculations reproduce those, using effective g factors.
- **10⁺ state in ¹³⁰Sn should have the most pure configuration** (high spin; no possible mixing below the shell closure)

Unexpected results from RIKEN on ¹³⁰Sn 10⁺

- Gyromagnetic factors of the 11/2⁻ states (also including the 10⁺ in ¹¹⁶Sn) are quasi constant over the large range of neutron numbers. The only exception 10⁺ in ¹²⁸Sn (reported with a large error-bar). They are all very close to the effective Schmidt line $(g_s = 0.7 * g_s^{\text{free}})$
- Different theoretical calculations reproduce those, using effective g factors.
- **10⁺ state in ¹³⁰Sn should have the most pure configuration** (high spin; no possible mixing below the shell closure)

- A recent study at RIBF, RIKEN of the 10⁺ isomer in ¹³⁰Sn indicates a g factor very close to the free Schmidt value. Is this **another example that the "effective values" are due to shortcomings in theory rather then having any robust physical meaning?** (*see e.g. P. Gysbers et al., Nature Physics 15, 428 (2019)*)
- **The unexpected RIKEN result (done with very poor statistics) needs reconfirmation beyond any doubts!**

The on-line PAC technique

From the experimental perturbation pattern one extracts

 $v_1 = \mu/l * B / h$ Magnetic field B from external magnet or ferromagnetic solid

 $v_0 = e Q * Vzz / h$ Electric field gradient Vzz in non-cubic solid (from theory!) or reference isotope

We shall clear up most of this mess !

Complex decay scheme

requires multi-dimensional on-line storage and off-line analysis

Simple decay scheme

for testing of target materials and effects of implantation damage

The test program using 119 **In** \rightarrow 119 Sn 3/2⁺

Experiment:

Test indium implantation into Zn single crystal, study damage effect as function of temperature

Measure precision value for QI at one optimal T

Test indium implantation into graphite or alternatives S, Se

Check effect of implantation damage in Fe at RT

Purpose:

Find optimal temperature for on-line experiments with 5⁻ states

Find Q ratio to 116 Sn 5⁻

Find optimal matrix for short-lived 5 cases

Understand origin of spectral damping

The 5⁻ states

Quadrupole moments expected identical to 11/2- state in A+1Sn

Magnetic moments as coupling of (**11/2-) and (1/2⁺) in A+1Sn**

Simulated spectra for long-lived 5- states

note different running times!

The off-line program for 5⁻ states with Sb sources using 4-5 existing PAC spectrometers of solid-state collaboration

QI (temperature) for 116 Sn in Zn after annealing (at least 2 points)

QI for ¹¹⁶Sn in In for precise Vzz

QI for ¹¹⁸Sn in Zn for precise Q

Test implantation of $118S$ b into graphite

QI for 120 Sn in graphite to obtain Q

MI at RT for 116 Sn in Fe after annealing for precise B_{hf}

MI for 116 Sn in Ni at 200C

MI for 118 Sn in Fe for precise μ

Test implantation of ¹¹⁸Sb into Gd

MI for 120 Sn in Gd to obtain μ

The 7⁻ states

Quadrupole moments as coupling of Q(**11/2-) and Q(3/2⁺) in A+1Sn**

Magnetic moments as coupling of (**11/2-) and (3/2⁺) in A+1Sn**

Simulated spectra for long-lived 7 - state in ¹²⁴Sn

A fortunate case: Due to small Q expected and favorable decay characteristics PAC feasible in spite of long $t_{1/2}$ (3.1 μ s)

10⁺ state in ¹³⁰Sn

- **Should have a very pure h11/2 ² configuration** Also 8⁺ state will be virtually pure $h_{11/2}^2$
- B(E2) will give the most precise value for Q
- Thus: Measuring QI (in In) for **new reference!**
- However: Difficult to estimate run time
- Therefore: Postpone until after MI experiment!

Check of preliminary RIKEN results for :

Simulated spectrum for measurement in magnet

Acceptable accuracy reachable!

Required beamtimes

Off-line

4

Slides for discussion

Sn results from COLLAPS

• Recent results from laser spectroscopy of odd-mass Sn isotopes from COLLAPS: **D.T. Yordanov et al., Comm. Phys. 3, 107 (2020)** – magnetic and quadrupole moments and r.m.s. radii for odd-mass Sn isotopes

- The magnetic and the quadrupole **moments of the s.p. states** have been determined!
- Our aim **test the additivity rule for a chain of semi-magic (Sn) nuclei** \rightarrow does the **simple SM picture** work or what could it teach us?

Expected spectra for short-lived 5 - states

Simulated spectrum for 6 + state in ¹³²Sn

Gamow-Teller β decay of 100 Sn (Z,N=50)

Gamow-Teller β decay of 100 Sn (Z, N=50)

D. Lubos *et al.*, Phys Rev. Lett. 122, 222502 (2019) P. Gysbers *et al.*, Nature Physics 15, 428 (2019)

Gamow-Teller β decay of 100 Sn (Z,N=50)

- Discrepancy between exp. and theoretical β decay rates, $g_A(1,27)$ quenched \sim 0.75 (e.g. Towner "Quenching of spin matrix elements in nuclei" Phys. Rep. 155 (1987)), *is without first-principle explanation*
- Combining EFT of the strong and the weak forces with quantum many-body techniques explains the discrepancy

P. Gysbers *et al.*, Nature Physics 15, 428 (2019)

Gamow-Teller β decay of 100 Sn (Z, N=50)

- Discrepancy between exp. and theoretical β decay rates, $g_A(1,27)$ quenched \sim 0.75 (e.g. Towner "Quenching of spin matrix elements in nuclei" Phys. Rep. 155 (1987)), *is without first-principle explanation*
- Combining EFT of the strong and the weak forces with quantum many-body techniques explains the discrepancy

P. Gysbers *et al.*, Nature Physics 15, 428 (2019)