Investigation of octupole deformation in neutron-rich actinium using high-resolution in-source laser spectroscopy

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

P-556

Reinhard Heinke

on behalf of the P-556 collaboration

KU LEUVEN

Octupole deformation in Ac region

- Pear shaped intrinsic nuclear configurations
- Resulting from opposite parity single nucleon states, differing in
 3 units of orbital and total angular momentum
- Breaking of reflection symmetry
- Prominent around ²²²Ra (Z ≈ 88, N ≈ 134)
- Manifestation in near-generate
 parity doublets with same ang. momentum

N=20

 \circ Inverted odd-even staggering

Z=20

of charge radii?

(Po, At, Fr,

Rn, Ra)

7=82

KU LEUVEN

Nuclear shape investigations by laser spectroscopy

Ac laser ionization scheme (used at LISOL, TRIUMF, ISOLDE, JGU, ...)

 Isotope shift:
 Evolution of center frequency with changing N

$$\delta \nu_{A,A'} = \nu_{A'} - \nu_A =$$

$$(K_{\rm NMS} + K_{\rm SMS}) \frac{m_A - m_{A'}}{m_A \cdot m_{A'}} + F_{\rm FS} \frac{\delta \langle r^2 \rangle_{A,A'}}{\delta \langle r^2 \rangle_{A,A'}}$$

 Hyperfine structure:
 Spin, magnetic dipole moment, electric quadrupole moment

$$A = \frac{\mu_l B_j}{IJ} \qquad B = e Q_s \left(\frac{\partial^2 V_e}{\partial z^2} \right)_{r=0}$$

KU LEUVEN

Fig. from Verstraelen et al., Phys. Rev. **C** 100, 044321 (2019) State-of-the-art EDF calculations in comparison to laser spectroscopy data

- Data below N = 126 described equally well
- Neutron-rich data as benchmark cases
- Incorporation of reflection-asymmetry

as key parameter

- $\circ~$ Measurement of $\delta < r^2 >$ to pin down behavior
- $\circ~$ Evaluation of odd-even staggering
- Strong support from theory

- δ<r²> *a priori* potentially arising from
 different multipole contributions
- $\circ~$ Larger β_{20} values if no octupole deformation
- Disentanglement by additional observables
 - B₂₀ as inferred from *B(E2)* in neighboring Th
 - Observed parity doublets in Ac
 - Measurements of spectroscopic quadrupole moment Q_s

High resolution in-source spectroscopy

Sub-Doppler in-source spectroscopy: PI-LIST

ISOLDE's LIST ion source

Narrow band spectroscopy laser (Fiber link CRIS + RILIS, used for 2-photon spectroscopy 2018)

Resolution enhancement

by order of magnitude (< 200 MHz) at cost of factor 1000 in intensity compared to standard RILIS

Operation mode change possible at any time

PI-LIST high-resolution spectroscopy at JGU

Implementation at ISOLDE: Adapted extractor

- Extensive simulation studies and off-line tests performed at JGU,
 - > 1 year of routine operation without problems
- PI-LIST unit assembled at CERN
- Adaption of ISOLDE-type extractor approved by RBS team
- Test planned on Off-line 2 separator
- Test planned at on-line frontend within LS2
 - → optimum moment for integration!
- Activity within EU Marie Curie Network LISA
 - → dedicated manpower and support!

Detection of produced ions vs. laser frequency adapted to yield and decay properties:

			÷ 30	÷ 1000				
				\rightarrow				Single ion counting
Isotope	$T_{1/2}$	Yie RILIS	ld (ions LIST	$/\mu C)$ PI-LIST	Det.	Measurement	Shifts	with MagneToF
^{222}Ac	$63\mathrm{s}$	2	0.1		α	IS, μ	2	
^{223}Ac	$2.10 \min$	1×10^3	30		α	IS, μ	2	
^{224}Ac	$2.78\mathrm{h}$	9×10^5		9×10^2	ions	IS, μ , Q_s	1	Lower resolution a
$^{225}\mathrm{Ac}$	$9.92\mathrm{d}$	3×10^7		3×10^4	ions	Ref.	0.5	
$^{226}\mathrm{Ac}$	$29.37\mathrm{h}$	3×10^6		3×10^3	ions	$(IS, \mu), Q_s$	0.5	decay detection at
$^{227}\mathrm{Ac}$	21.77 у	3×10^7		3×10^4	ions	Ref. & Setup	1.5	
$^{228}\mathrm{Ac}$	$6.15\mathrm{h}$	2×10^6		2×10^3	ions	$(IS, \mu), Q_s$	0.5	ISOLDE Decay Stati
^{229}Ac	$62.7\mathrm{min}$	3×10^5		3×10^2	$ $ ions $/\beta$ $ $	$(IS, \mu), Q_s$	1	
$^{230}\mathrm{Ac}$	$122\mathrm{s}$	3×10^2	10		β	IS, μ	2.5	(annular Si detecto
$^{231}\mathrm{Ac}$	$7.5\mathrm{min}$	2×10^3	70		β	IS, μ	2.5	
$^{232}\mathrm{Ac}$	$1.98 \min$	80	3		β	IS, μ	2.5	plastic scintillators)
$^{233}\mathrm{Ac}$	$145\mathrm{s}$	70	2		β	IS, μ	2.5	
Total:							19	

th MagneToF wer resolution and cay detection at **OLDE Decay Station** nular Si detector + stic scintillators)

KU LEUVEN

TAC: Contamination of beam instrumentation (FC's)?

→ Only setup / cross checks in standard RILIS mode

Summary

- Measurement on ²²²⁻²³³Ac isotope chain
- > Extraction of $\delta < r^2 >$, I, μ , Q_s
- Pin down octupole behavior in Ac region by probing state-of-the-art theoretical models
- Achieve required resolution and selectivity with PI-LIST and IDS

Collaboration

B. Andel¹, A. N. Andreyev², M. Au³, A. E. Barzakh⁴, A. J. Brinson⁵, K. Chrysalidis³,
T. E. Cocolios¹, B. S. Cooper⁶, J. Cubiss², H. De Witte¹, K. Dockx¹, D. V. Fedorov⁴,
V. N. Fedosseev³, K. T. Flanagan⁷, R. F. Garcia Ruiz⁵, F. P. Gustafsson¹, R. Heinke¹,
J. Johnson¹, M. Kadja⁸, V. Leask^{1,3}, R. Lica⁹, B. A. Marsh³, P. L. Molkanov⁴
G. Neyens^{1,3}, H. A. Perrett⁷, S. Raeder¹⁰, B. Reich³, C. M. Ricketts⁷, S. Rothe³,
M. D. Seliverstov⁴, S. M. Udrescu⁵, P. Van Duppen¹, A. R. Vernon¹, E. Verstraelen¹,
K. Wendt⁸, J. Wessolek⁷, S. G. Wilkins³, W. Wojtaczka¹, X. F. Yang⁶

¹KU Leuven, Belgium
²University of York, United Kingdom
³CERN EN-STI, Switzerland
⁴PNPI Gatchina, Russia
⁵Massachusetts Institute of Technology, United States
⁶Peking University, China
⁷The University of Manchester, United Kingdom
⁸Johannes Gutenberg University Mainz, Germany
⁹Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
¹⁰GSI Helmholtzzentrum für Schwerionenforschung, Germany

Backup slides

PI-LIST Spectroscopy on ^{166m}Hoc

Inverse odd-even-staggering in actinium

KU LEUVEN

Nuclear moments in actinium

Standard LIST for IS614 (2018)

Radioisotopes (β counting)								
	Before run	After run (4 days)						
Loss Factor (22 Mg, T _{1/2} = 3.9s)	28	26						
Suppression Factor (21 Na, T _{1/2} = 22.5s)	$1.0 \cdot 10^{6}$	$1.6 \cdot 10^{6}$						

24/6/2020 | 64th meeting of the INTC

The Laser Ion Source and Trap LIST

Metallic mirrors

Machined at JGU mechanical workshop

Optional surface treatment by pulsed laser deposition

- > Transversal reflection by **robust metallic mirror** surfaces
- > Off-axis guiding of spectroscopy laser through ion beam line

Efficiency considerations

