Beta-delayed neutron emission of ¹³⁴In and search for i_{13/2} single particle neutron state in ¹³³Sn

Spokespersons: Robert Grzywacz (University of Tennessee, ORNL), rgrzywac@utk.edu, Marek Karny (University of Warsaw) karny@mimuw.edu.pl Miguel Madurga (University of Tennessee), Miguel.madurga@gmail.com, Local Contact: R. Lică

R. Grzywacz^{1,2}, M. Madurga¹, M. Karny³, A. Algora⁴, J.M. Allmond², D. Bardayan⁵, J. Benito⁶, N. Brewer², A. Fijałkowska³, L.P. Gaffney⁷, J. Heideman¹, S. Neupane¹, T. King¹, N. Kitamura¹, L. M. Fraile⁶, M. J. Garcia Borge⁸, A. Illana^{9,10}, Z. Janas³, K.L. Jones¹, T. Kawano¹¹, K. Kolos¹², A. Korgul³, R. Lică¹³, C. Mazzocchi³, K. Miernik³, J.R. Murias⁶, R.D. Page⁷, M. Piersa³, B.C. Rasco², M.M. Rajabali¹⁴, K. Rykaczewski²,

K. Siegl¹, M. Singh¹, C. Sotty⁸, O. Tengblad⁸, N. Warr¹⁵, H. DeWitte¹⁶, R. Yokoyama¹, Z. Xu¹

¹Dept. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA.

² Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA.

³ Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland.

⁴ Instituto de Fisica Corpuscular, Edificio de Institutos de Paterna, E-46071 Valencia, Spain.

⁵ Institute for Structure and Nuclear Astrophysics, Department of Physics, Netre Dame, Indiana 46556, USA.

⁶ Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, E-28040, Spain.

⁷ The University of Liverpool, Liverpool L69 7ZE, United Kingdom.

⁸ Instituto de Estructura de la Materia, E-28006 Madrid, Spain.

⁹ University of Jyväskylä, Department of Physics, Jyväskylä, Finland

¹⁰ Helsinki Institute of Physics, Helsinki, Finland

11 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

¹² Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

¹³ National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest, Romania

¹⁴ Tennessee Technological University, Cookeville, Tennessee, USA

¹⁵ Institut für Kernphysik, Universität zu Köln, Germany.

¹⁶ KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven, Belgium.

The ¹³²Sn region - nuclear structure meets astrophysics

Beta decay near ¹³²Sn (Z<50)

Dominant transition

Gamow-Teller decays of N=82 isotopes near ¹³²Sn populates hole states in N=82 neutron core.

In the decay of ¹³⁴In excited states in ¹³⁴Sn, ¹³³Sn and ¹³²Sn are populated.

The four goals of the ¹³⁴In measurement

- 1. Measure the dominant GT transition and complete decay pattern (nuclear strucuture models, r-process)
- 2. 1n/2n emission and nn energy correlations (neutron emission model)
- 3. Search for neutron $i_{13/2}$ state in ¹³³Sn
- 4. Locate other (proton-core) excitation modes

The ¹³³In experiment (Xu, Madurga, RG et al. manuscript to be submitted)

Predicted GT strength distribution for ¹³⁴In decay

C. Yuan et al. Physics Letters B 762, 237 (2016). jj46vmu (π3ħω,ν4ħω,ν5ħω)

β2n spectroscopy of ¹³⁴In decay

β-: 100.00% -8425.0	β∹ 100.00% -9855	β-: 100.00% -4975	β-: 100.00% β-n: 22.00% -2896	β-: 100.00% β-n: 16.30% 1884	β-: 100.00% β-n: 49.00% 1.53E+3	β-: 100.00% β-n: 72.00% 4.1E+3	β-: 100.00% β-n: 90.00% 3.4E+3
131Sn 56.0 S	132Sn 39.7 S	133Sn 1.46 S	134Sn 1.050 S	135Sn 530 MS	136Sn 0.290 S	137Sn 190 MS	138Sn 140 MS
β-: 100.00% -8778	β-: 100.00% -10404	β-: 100.00% β-n: 0.03% -5035	β-: 100.00% β-n: 17.00% -2941	β-: 100.00% β-n: 21.00% 2149	β-: 100.00% β-n: 28.00% 2.0E+3	β-: 100.00% β-n: 58.00% 3.8E+3	β∹ 100.00% β-n≈ 36.00% 3.5E+3
130In 0.29 S	131In 0.28 S	132In 0.207 S	133In 165 MS	134In 140 MS	135In 92 MS	136In 85 MS	137In 65 MS
β-: 100.00% β-n: 0.93% -2.66E+3	β-: 100.00% β-n≤ 2.00% -3577	β-: 100.00% β-n: 6.30% 1.58E+3	β-: 100.00% β-n: 85.00% 3.66E+3	β-: 100.00% β-n: 65.00% 8.7E+3	β -: 100.00% β -n 8.2E+3	β -: 100.00% β -n 9.8E+3	$\beta = 100.00\%$ $\beta - 2n$ $9.4E \pm 3$
129Cd 154 MS	130Cd 162 MS	131Cd 68 MS	132Cd 97 MS	133Cd 57 MS	134Cd 65 MS		
β -: 100.0% β -n > 0.00% -2.30E+3	β-: 100.00% β-n: 3.50% -3.11E+3	β-: 100.00% β-n: 3.50% 1.48E+3	β-: 100.00% β-n: 60.00% 3.48E+3	β-: 100.00% β-2n 8.0E+3	β-: 100.00% β-n 7.3E+3		

Large: $Q_{\beta}-S_{2n}=8.7 \text{ MeV}$ $P_{2n}\sim0.1$, $P_{1n}\sim0.8$

- -1n vs 2n competition
- excited states in ¹³³Sn (n-n)
- unbound states in ¹³³Sn previously studied
 - decays to excited states in ¹³²Sn

The vi_{13/2} state in ¹³³Sn from β 2n decay

- 2792 keV line observed in the $^{132}{\rm Sn}(^{9}{\rm Be},\,^{8}{\rm Be})^{133}{\rm Sn}$
- neutron unbound by about 400 keV
- expected to decay predominantly via neutron emission
- observed gamma ray (E3) not compatible with expected population of ${\rm i}_{\rm 13/2}$ in neutron transfer reaction.

W. Urban, et al., Eur. Phys. J. A 5, 239 (1999).
J. Allmond et al. Phys. Rev. Lett. 112, 172701 (2014).
Y. Lei and H. Jiang, Phys. Rev. C 90, 047305 (2014)

Decay modes of E*=7 MeV state in ¹³⁴Sn as a function of spin (coh3 code Kawano, Koning-Delaroche optical model)

R. Yokoyama et al., Phys. Rev C 100(3), 031302(R) (2019).

Population of i_{13/2} state in ¹³³Sn as a function of the spin of the neutron emitting state in ¹³⁴Sn

Prevalent population of $9/2^{-1}$ state in 133 Sn and the population of 6+ state in 132 Sn suggests) the high-spin of 134 In (M. Piersa et al.)

Population of highly excited states in ¹³⁴Sn proton-core or other modes of excitations ?

INDIE and NEXT arrays at IDS

J. Heideman et al. Nuclear Instruments and Methods A, 946 (2019) 162528.

Beam time request

Collect statistics sufficient to construct nn and ny cascades.

15 shifts to collect ~ $1x10^{6}$ neutrons 134 In (INDiE) 2 shifts to collect ~ $0.5x10^{6}$ neutrons from 132 In During the 15 shifts we expect to collect about $15x10^{3}$ of two-neutron events.

IDS with RILIS uniquely positioned to perform the pioneering (and high statistics) 2n spectroscopy of ¹³⁴In decay

Table 1: Expected neutron rates. These calculations are done for 2 uC PS Booster beam and 50% transmission efficiency to IDS (n.c. = neutron converter)

	P _{1n}	Yield	IDSND	Neutrons	Shifts	Target	Source
	(%)	(ion/µC)	Eff	(1/h)			
¹³² In	6.3%	8000	0.04	4.0 10 ⁴	2	UC _X +n.c.	Hot Ta line and cavity + RILIS
¹³⁴ In	80%	100	0.04	8.1 10 ³	15	UC _X +n.c.	Hot Ta line and cavity + RILIS
¹⁷ N	95.1%	100	0.04	1.010^5	1	CaO	Hot Ta line and cavity

INTC 64 June 2020: Technical advisory committee recommendations:

Beam intensity/purity, targets-ion sources

The isotopes have been delivered previously. №te that lodine will not be ionised, the main contaminant will be Cs. 17N could potentially be also delivered from a UC target with VD7 ion source which may facilitate scheduling. *General Comments*

The beam request entails two different targets and ion sources, although this has been possible in the past it is difficult to schedule. Is there an alternative calibration isotope for VANDLE from a "standard" UC target/ion source?

TAC recommendation

The TAC does not see any serious issues with this proposal. *The main difficulty would be in scheduling two targets to allow for the calibration run.* If a plan B could be found it would make ease the scheduling.

Response:

^{134m}Cs contamination is suppressed by the tape cycle and by the gate on the beta plastic scintillator but is generally not desired for the 2n measurement.

The ¹⁷N calibration run can be substituted by the ⁴⁹K calibration run.

The ⁴⁹K spectrum is more complex but has been utilized in the past and large yields are expected from the standard UCx source used for this experiment.