EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Precise measurements of the β -decays of ⁹Li and ⁸He for reactor neutrino experiments

May 12, 2020

H.O.U. Fynbo¹, A. Algora², A. Andreyev³, M.J.G. Borge⁴, J.A. Briz⁴, J. Cederkäll⁵, J. Cubiss³, U. Datta¹⁹, A. Fijalkowska⁶, L.M. Fraile⁷, A. Gad¹, L. J. Harkness-Brennan⁸, A. Heinz⁹, M. Holl⁹, M. Huyse¹⁰, E. Jensen¹, H.T. Johansson⁹, B. Jonson⁹, D. S. Judson⁸, O. S. Kirsebom¹¹, A. Korgul⁶, I. Lazarus¹², R. Lica¹³, C. Mazzocchi⁶, M. Madurga¹⁴, N. Marginean¹³, R. Marginean¹³, K. Miernik⁶, C. Mihai¹³, M. Munch¹, E. Nacher², A. Negret¹³, T. Nilsson⁹ R. D. Page⁸, A. Perea⁴, M. Piersa⁶, Z. Podolyak¹⁵, V. Pucknell¹², J. Ojala¹⁶, J. Pakarinen¹⁶, J. Refsgaard¹⁷, K. Riisager¹, C. Sotty¹³, O. Tengblad⁴, R. Wadsworth³, N. Warr¹⁸, V. Vedia⁷, H. De Witte¹⁰

++ Jaime Benito, Luis Fraile, Pete Jones, IDS collaboration

Spokesperson: Hans O.U. Fynbo fynbo@phys.au.dk Contact person: Razvan Lica razvan.lica@cern.ch

Summary of requested shifts: Based on this, we request 10 shifts of beam time of ⁸He produced from a CaO target, and 8 shifts of beam time of ⁹Li produced from a Ta target.

Reactor neutrino experiments

The Daya Bay Experiment EH3 Far Hall 3 Experimental Halls (EH) 1615 m from Ling Ao I 1985 m from Daya Bay Macau EH2 350 m overburden Map data \$2014 AutoNant. Geogle Ling Ao Near Hall 481 m from Ling Ao I 526 m from Ling Ao II 112 m overburden 3 Underground Experimental Halls Entrance - Ling Ao II Cores - Ling Ao I Cores Daya Bay Near Hall 363 m from Dava Bay 17.4 GW_{th} power 98 m overburden 8 operating detectors 160 t total target mass Daya Bay Cores

Double Chooz, Daya Bay, Reno, Juno, ...

Several running and planned experiments addressing fundamental questions in the standard model.

⁹Li and ⁸He decays in GEANT4

C. Jollet, A. Meregaglia

CENBG, Université de Bordeaux, CNRS/IN2P3, 33175 Gradignan, France

SEVIER

Contents lists available at ScienceDirect

NUCLEAR NSTRUMENTS & METHODS IN PHYSICS RESEARCH

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

ARTICLE INFO

Keywords: Neutrino Reactor Cosmogenic background GEANT4

ABSTRACT

The decays of cosmogenic nuclei such as ⁹Li and ⁸He represent one of the largest irreducible backgrounds for reactor antineutrino experiments. The correct treatment of such decays are of fundamental importance in the study of cosmogenic backgrounds and in their rejection, hence the full chain of intermediate excited states must be accounted for. Currently the treatment in GEANT4 of the modelling of de-excitation of ⁹Be and ⁸Li, which are the daughter nuclei of ⁹Li and ⁸He respectively, is not correct. ⁹Be excited states should break into a neutron and two α 's, and ⁸Li excited states should emit a neutron and possibly an α and a triton depending on the decay chain, whereas in GEANT4 they both reach the ground state by emitting a gamma. Based on the available nuclear measurements we included the correct treatment of ⁹Li and ⁸He decays in GEANT4 and compared the obtained results with the spectra published by the Double Chooz collaboration finding an excellent agreement.

Our motivation:

Additional nuclear experiments studying these nuclei aiming at a better knowledge of the energy levels and branching ratios of ⁹Li, ³He and their decay products would be beneficial in order to further improve the simulation tools used by reactor antineutrino experiments.

Present status for ⁹Li

Table 1

Branching ratios and relative errors for the different decay channels of ⁹Li. In the last column the references are quoted.

⁹ Be state (MeV)	⊿E (MeV)	β decay BR	Decay mode	Decay mode BR	Reference
11.81	0.4	2.7%	⁵ He (g.s.) +α ⁵ He (1.27) +α ⁸ Be (g.s.) + n ⁸ Be (3.03) + n ⁸ Be (11.35) + n	$\begin{array}{c} 28\% \pm 6\% \\ 47\% \pm 6\% \\ 2\% \pm 1\% \\ 11\% \pm 6\% \\ 12\% \pm 8\% \end{array}$	[8,9]
11.28	0.58	1.1%	⁵ He (g.s.) +α ⁸ Be (g.s.) + n ⁸ Be (3.03) + n	$76\% \pm 30\%$ $3\% \pm 1\%$ $21\% \pm 8\%$	[8,10]
7.94	1.	1.5%	5 He (g.s.) + α 8 Be (g.s.) + n 8 Be (3.03) + n	80% 10% 10%	[6,8] + our Assumptions
2.78	1.1	15.8%	5 He (g.s.) + α 8 Be (g.s.) + n 8 Be (3.03) + n	25% 15% 60%	[6,8] + our assumptions
2.43	<0.01	29.7%	5 He (g.s.) + α 8 Be (g.s.) + n 8 Be (3.03) + n	$\begin{array}{r} 2.5\% \pm 2.5\% \\ 11\% \pm 2\% \\ 86.5\% \pm 4.5\% \end{array}$	[8,11] + our Assumptions

Goal of our experiment 1-3% precision on transitions down to 1% branching ratio

Present status for ⁸He

Table 3

g.s.

Branching ratios and relative errors for the different decay channels of ⁸He. In the last column the references are quoted.

⁸ Li state (MeV)	⊿E (MeV)	β decay BR	Decay mode	Decay mode BR	Reference
9.67	1	0.9%	³ H + ⁵ He (g.s.) ⁷ Li (0.48) + n ⁷ Li (g.s.) + n	80% 10% 10%	[8,14] + our assumptions
5.4	0.65	8.0%	⁷ Li (0.48) + n ⁷ Li (g.s.) + n	50% 50%	[8,14] + our assumptions
3.21	1	8.0%	7 Li (0.48) + n 7 Li (g.s.) + n	50% 50%	[8,14] + our assumptions

10.651 MeV

Uncertainties presently 10-30% or not given

Goal of our experiment 1-3% precision on transitions down to 1% branching ratio

Planned setup @ IDS

Neutrons:

INDie + ³He spectrometers 40% intrinsic + 15% of 4π

- Charged particles (α , t) intrinsic
- 10-15% of 4π per DSSSD, 97%

Betas

Plastic for TOF 10-15% of 4π +Beta energy measurements

Beamtime estimate

Estimate based on requirement to detect :

✓ Two charged particles (α or triton)
✓ Beta for TOF
✓ Neutron in INDie
✓ Measure branching ratios down to 1% with precision 1-3%

 \rightarrow combined efficiency of such events is appr. 6 \times 10⁻⁵

Based on known yields of ⁹Li from Ta target and ⁸He from CaO we ask for

- \rightarrow 8 shifts of ⁹Li beam
- \rightarrow 10 shifts of ⁸He beam