

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the decay scheme of ^{142}Cs

P. Jones¹, L. Pellegri^{1,2}, M. Wiedeking^{1,2}, A. Avaa^{1,2}, T. Khumalo^{1,2}, R. Bark¹, R. Lică^{3,6}, J. Pakarinen⁴, A. Illana⁴, J. Ojala⁴, P. Van Duppen⁵, T.E. Cocolios⁵, M. Stryjczyk⁵, N. Marginean⁶, C. Mihai⁶, A. Negret⁶, S. Pascu⁶, C. Sotty⁶, A. Algora⁷, E. Nácher⁷, N. Warr⁸, L. Gaffney⁹ R. Page⁹, P. Papadakis¹⁰, D. Cox¹¹, A. Andreyev¹², J. Cubiss¹², Zs. Podolyák¹³, A. Fijałkowska¹⁴, A. Korgul¹⁴, K. Miernik¹⁴, M. Piersa¹⁴, J. Benito¹⁵, L.M. Fraile¹⁵ and J.R. Murias¹⁵

Spokesperson: [P. Jones] [pete@tlabs.ac.za] Contact person: [R. Lica] [razvan.lica@cern.ch]

Decay Scheme of 142Cs

- Measurements by decay spectroscopy of yields of Cs isotopes in various fission reactions systematically show a *discontinuity* for ¹⁴²Cs when plotted versus the decay half-life.
- Solving it by a mere renormalisation of beta feeding, however, would suggest a lower log ft value for the first-forbidden transition to the ¹⁴²Ba ground state, which at 5.6 is already one of the *lowest* known.
- Recently a ¹TAS measurement suggested the whole pattern of beta feedings to be different from the evaluation on ENSDF.
- Interesting other physics and measurement challenges. ¹B.C. Rasco, et al., Phys. Rev. Lett. 117, 092501 (2016)

Yield anomaly

Garchina IRIS Group - V.N.Panteleev et al. Nucl. Instr. and Meth.B 240, 888 (2005) G. Lhersonneau, Priv. Comm.

500-700A

2.5-3.5V

н

U_ =150-200V

Extraction electrode

Experimental efficiency contains release parameters depending on chemistry of Cs in UC (temperature obviously, high T \rightarrow faster release \rightarrow higher efficiency) and on decay half-life

Singularity for ¹⁴²Cs shows that the nuclear decay data of ENSDF used by the Gatchina group are not correct

Open Questions and MTAS data

 Q_{β} = 7325 (9) keV T_{1/2}= 1.684 (14) s

Open Questions and MTAS data

Nuclear structure insights into reactor antineutrino spectra

Missed high-energy gamma rays ? E0 transitions from 0⁺ states ? Lifetimes / isomers →Understanding of 1st Forbidden transitions

B.C. Rasco, et al., Phys. Rev. Lett. 117, 092501 (2016) A.A. Sonzogni, et al., Phys. Rev. C 91, 011301(R) (2015)

Aims of Measurement

- Measure angular correlations of gamma rays using multi-gamma detector array
- Complete the scheme by looking for high energy gamma-ray transitions
- Use good timing reference (beam pulse, release) to get gammaray energy versus time matrices to:
 - assign lifetime of nucleus (or contaminants)
 - to identify possible isomer(s)
- Electron spectroscopy of EO transitions and investigation of excited 0⁺ states
- Measure conversion coefficients of low lying E2 transitions in decay scheme

Measurement of lifetime of low-lying transitions or from 0⁺ to 2⁺ decays lifetimes

Experimental Setup at IDS

➢ 6 HPGe Clover Detectors - 2 Romania, 4 Leuven – 2 (with 600µm C window)

DS2 Clover

Clover

- New frame to accommodate 4 clovers with electron spectroscopy setup
- SPEDE 1mm detector FWHM ~6 keV
- Tape Station moving > 1/20s

Papadakis et al. EPJ A 54 42 (2018)

Miniball at ISOLDE (IS559) + 3.5"x8" LaBr₃

ALBA and Fast-Timing Detectors

We will collaborate with other experiments benfitting from these detectors

Efficiency one LaBr3:Ce at 75mm from target

Fast-Timing Array: 2"x2"

ALBA: African Lanthanum Bromide Array: 3.5"x8"

Advancing knowledge. Transforming lives. Inspiring a nation.

INTC 64 Technical Advisory Committee recommendation

Measurement of the decay scheme of 142Cs							
CDS#	Proposal #	IS #	Setup	Shifts	Isotopes		
CERN-INTC-2020-030	INTC-P-557		IDS/SPEDE	10	142Cs		
	The beam request has been based on the production of 142Cs from a target equipped with a quartz line: intended to suppress isotopes such as Cs. From a normal target and ion source unit this will be a very strong beam of the order of 10 ⁹ ions /uC.						
Beam intensity/purity,							
targets-ion sources	The beam request should therefore be re-evaluated with this in mind. Can the setup handle an order of magnitude stronger beam or would						
	some limits of proton intensity be required? What beam intensity is required?						
General implantation and	Higher intensity w.r.t to the project proposal will require adding shielding to the set-up to limit the dose rate (~7 mSv/h at 40 cm with 2e9						
setup	ions/s)						
General Comments	A stronger beam may require running ISOLDE is a limited mode as has been seen for other strong primary beams.						
Safety	Safety clearance of IDS set- up can be found at 1807224 – No additional hazards. The ISIEC file shall be updated.						
	The TAC recommends that the beam request is re-evaluated with the stronger secondary beam which is likely from a standard target/ion						
TAC recommendation	source combination. The maximum intensity required for the setup will allow a better estimation of how long is required for this						
	experiment.						

Proposal based on 2x10⁵ ions/sec, however as the TAC notes, the available yield is much higher (10⁹) After a review of the rates estimation and the possibility to acquire an improved dataset (especially in terms of gamma-electron coincidences) can review this proposal with an order of magnitude in beam.

Estimation of Running Time

- Yield $2x10^5 \rightarrow 10^6$ ions per second (reconfigure some efficiencies)
- γ-ray decay branching of 0.45%
- typical α_{tot} conversion of 7x10⁻³
- typical average photon total detection efficiencies (15% at 600 keV, 8% at 2 MeV) of 11%

Decay Mode	Transition Intensity (γ) % or ICC (e ⁻)	Detection / sec (x 10 ⁻²)	Shifts per measurement
γ	0.45	3540	0.01
γ-γ	0.45	33.46	10.38
CE	3.2x10-3	32.76	10.60
CE-γ	3.2x10-3	3.60	9.64

We therefore request a total of ten shifts (9 spectroscopy, 1 for IDS optimisation) to complete the detailed spectroscopy of the decay scheme, using both **y** rays and conversion electrons.

Thank you for your attention!

P. Jones¹, L. Pellegri^{1,2}, M. Wiedeking^{1,2}, A. Avaa^{1,2}, T. Khumalo^{1,2}, R. Bark¹, R. Lică^{3,6}, J. Pakarinen⁴, A. Illana⁴, J. Ojala⁴, P. Van Duppen⁵, T.E. Cocolios⁵, M. Stryjczyk⁵, N. Marginean⁶, C. Mihai⁶, A. Negret⁶, S. Pascu⁶, C. Sotty⁶, A. Algora⁷, E. Nácher⁷, N. Warr⁸, L. Gaffney⁹ R. Page⁹, P. Papadakis¹⁰, D. Cox¹¹, A. Andreyev¹², J. Cubiss¹², Zs. Podolyák¹³, A. Fijałkowska¹⁴, A. Korgul¹⁴, K. Miernik¹⁴, M. Piersa¹⁴, J. Benito¹⁵, L.M. Fraile¹⁵ and J.R. Murias¹⁵

¹*iThemba Laboratory for Accelerator Based Sciences, Somerset West, South Africa* ²*University of the Witwatersrand, Johannesburg, South Africa* ³*ISOLDE CERN*

⁴Department of Physics, University of Jyväskylä, Finland

⁵KU Leuven, Institute for Nuclear and Radiation Physics, Belgium

⁶Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Romania

⁷Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46980, Valencia, Spain

⁸Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

⁹University of Liverpool, Liverpool L69 7ZE, United Kingdom

¹⁰STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

¹¹Department of Physics, Lund University, SE-22100 Lund, Sweden

¹²Department of Physics, University of York, York YO10 5DD, United Kingdom

¹³Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom

¹⁴Faculty of Physics, University of Warsaw, PL 02-093 Warsaw, Poland

¹⁵Grupo de Física Nuclear & IPARCOS, Universidad Complutense, E-28040 Madrid, Spain

