

Laser assisted studies of β -delayed fission in ^{178,176}Au and of the structure of ¹⁷⁵Au

Spokespersons: B. Andel (KU Leuven)

A. N. Andreyev (University of York)

A. E. Barzakh (PNPI)

J. G. Cubiss (University of York)

P. Van Duppen (KU Leuven)

64th Meeting of the INTC

Outline

- Part 1: β-delayed fission (βDF) of ground and isomeric states in ^{178,176}Au
- Detection setups
- Part 2: Laser spectroscopy of ^{175gs}Au

• Beam request

Collaboration:

B. Andel^{1,2}, A. N. Andreyev³, S. Antalic², A. E. Barzakh⁴, T. Berry⁵, M. J. G. Borge⁶, J. A. Briz⁶, A. Broniš², T. E. Cocolios¹, K. Chrysalidis⁷, J. G. Cubiss³, H. De Witte¹, K. Dockx¹, D. V. Fedorov⁴, V. N. Fedosseev⁷, L. M. Fraile⁸, H. O. U. Fynbo⁹, P. T. Greenlees¹⁰, L. J. Harkness-Brennan¹¹, R. Heinke¹, J. Johnson¹, D. T. Joss¹¹, D. S. Judson¹¹, J. Konki¹⁰, J. Kurcewicz⁷, I. Lazarus¹², R. Lică¹³, M. Madurga⁷, N. Marginean¹³, B. A. Marsh⁷, C. Mihai¹³, P. L. Molkanov⁴, P. Mosat², E. Nacher¹⁴, A. Negret¹³, K. Nishio¹⁵, R. D. Page¹¹, S. Pascu¹³, A. Perea⁶, V. Pucknell¹², P. Rahkila¹⁰, E. Rapisarda⁷, M. D. Seliverstov⁴, A. Sott³, C. Sotty¹³, P. Spagnoletti¹⁶, M. Stryjczyk¹, O. Tengblad⁶, I. Tsekhanovich¹⁷, P. Van Duppen¹, V. Vedia⁸, R. Wadsworth³, N. Warr¹⁸, and S. G. Wilkins⁷

¹KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium ²Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia

³Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom ⁴Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina, Russia ⁵Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ⁶Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain ⁷CERN, CH-1211 Geneve 23, Switzerland

⁸Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040, Madrid, Spain
⁹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
¹⁰University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014, Jyväskylä, Finland
¹¹Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

¹²STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom

 13 "Horia Hulubei" National Institute for R & D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania

¹⁴Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46980, Valencia, Spain

¹⁵Advanced Science Research Center, JAEA, Tokai, Ibaraki 319-1195, Japan

¹⁶Simon Fraser University, Burnaby, Canada

¹⁷CENBG, Bordeaux, France

¹⁸Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany

KU LEUVEN

Part 1(BDF of ^{178gs,is,176gs,is}Au): Physics motivation

- typically Q_β ≤ 12 MeV ⇒ low-energy fission properties of exotic isotopes (sensitive to shell effects)
- in many cases impossible to determine βDF probability: mixture of two β-decaying states and/or unknown β-decay branching ratios

 neither of these is an issue in our case (two states are in fact an opportunity to study spin dependence of fission)

A. N. Andreyev, K. Nishio, and K.-H. Schmidt, Rep. Prog. Phys. 81, 016301 (2018). A. N. Andreyev, M. Huyse, and P. Van Duppen, Rev. Mod. Phys. 85, 1541 (2013).

Part 1: Physics motivation

- discovery of asymmetric fission of ¹⁸⁰Hg in βDF of ¹⁸⁰Tl at ISOLDE [A. N. Andreyev et al., PRL 105, 252502 (2010).]
- followed by extensive studies towards symmetric fission in heavier nuclei [A. N. Andreyev, K. Nishio, and K.-H. Schmidt, Rep. Prog. Phys. 81, 016301 (2018); B. Andel et al, accepted in PRC (2020).]
- new island of asymmetric fission predicted in neutron-deficient region below Z = 82
- experimentally, extent of island of asymmetry below mercury unknown
- information on ¹⁷⁸Pt (β-decay daughter of ¹⁷⁸Au) only at higher excitation energies

 mixture symmetric and asymmetric modes
 [I. Tsekhanovich et al., PLB 790, 583 (2019).]

Part 1: Goals

- to probe the new island of asymmetry farther below mercury: to determine asymmetric or symmetric character of fission for ¹⁷⁸Pt (βDF of ¹⁷⁸Au)
- to identify βDF and determine βDF probability separately for ground and isomeric states in both ¹⁷⁸Au and ¹⁷⁶Au

(note: β-decay branching ratios measured in our IS534 exp. [J. G. Cubiss et al., ¹⁷⁸Au.

In preparation; R. D. Harding et al., ^{176,177,179}Au. In preparation.])

- to investigate poorly-known spin dependence of fission properties
- possibility to extract fission barriers from βDF probability, as was done for ^{178,180}Hg [M. Veselský et al., PRC 86, 024308 (2012).]

KU LEUVEN

Part 1: Experimental method

- isomer-selective ionization by RILIS (similar study done in IS608 for ^{188gs,is}Bi [B. Andel et al, accepted in PRC (2020).])
- hyperfine spectra (hfs) of ^{178,176}Au are known from our IS534 experiment
- isomer selectivity achieved already in broadband mode (BB), no loss of ionization efficiency related to narrowband mode

Hfs of ¹⁷⁶Au measured in NB mode: solid line shows resolution in BB mode.

Part 1: Expected fission yields

- estimates based on measured yields of ^{178is,gs,176is,gs}Au in IS534 and systematics of βDF probabilities
- orders of magnitude difference in estimates based on Thomas-Fermi (TF) model [1] and FRLDM [2] – test of predictive power

Expected implantation rate (ions/s) and rate of fission fragments per day.

	ions/s	FF/day	
		TF	FRLDM
$^{178}\mathrm{Au}^{\mathrm{gs}}$	2.4×10^3	3	1.4×10^3
$^{178}\mathrm{Au}^{\mathrm{is}}$	$2.0 imes 10^4$	23	1.2×10^4
$^{176}\mathrm{Au^{gs}}$	10	0.2	10
$^{176}\mathrm{Au^{is}}$	20	0.5	31

Systematics of β DF probabilities as function of Q_{β} – B_f, where B_f are fission barriers from TF model [1] (a) and from FRLDM [2] (b).

[1] W. D. Myers and W. J. Światecki et al., PRC 60, 014606 (1999). [2] P. Möller et al., PRC 79, 064304 (2009).

Detection setups

- **IDS** (standard tape station and 4 HPGe Clovers) with additional annular Si detector in front of the tape for detection of α particles and fission fragments
- used for both Part 1 and Part 2

 setup complemented by detectors for lifetime measurements of levels populated in ¹⁷⁸Pt by ¹⁷⁸Au β decay (mainly 0⁺₂ state) during βDF run (no extra beam time needed)

IDS during preparation for IS641 experiment.

Detection setups

- α decay setup (employed in IS637): will be used in the case of high fission yields in Part 1
- ladder with 10 carbon foils transparent to α particles and fission fragments (FF)
- foil at implantation position surrounded by annular and circular Si detectors (as in old Windmill setup)
- enables to measure FF coincidences, and deduce masses (FFMD)

Part 2 (Laser spectroscopy of ^{175gs}Au): Physics motivation

- from IS534: I = 1/2 for ^{177,179gs}Au and mixed $\pi 3s_{1/2}/\pi 2d_{3/2}$ configuration with **hint of a trend towards pure** $\pi 3s_{1/2}$ [1]
- unhindered α decay ¹⁷⁹Tl ($I = 1/2, \pi 3s_{1/2}$) \rightarrow ^{175gs}Au suggests pure $\pi 3s_{1/2}$ configuration for ^{175gs}Au [2]

 this would mean rearranging of shell model states, as π2d_{3/2} configuration is expected for ^{175gs}Au from shell model

[1] J. G. Cubiss et al., PLB 786, 355 (2018).[2] A. N. Andreyev et al., PRC 87, 054311 (2013).

Part 2: Goals

- hfs and isotope shift (IS) measurement of ^{175gs}Au
- to determine *g*-factor and deduce the configuration
- to determine change in mean-square charge radius to obtain information on the nuclear deformation

Adapted from [J. G. Cubiss et al., PLB 786, 355 (2018); R. D. Harding et al., Mean-square charge radii of gold isotopes. In preparation.]

Part 2: Experimental method and yield estimate

- laser scan using RILIS in narrow band mode
- expected production yield in maximum is 0.3 ions/s (based on extrapolation of measured yields of heavier Au isotopes (down to ¹⁷⁶Au) and considering half-life)
- in the past, we successfully measured IS and hfs of ¹⁷⁷Hg with yield down to ≈0.1 ions/s [B. Marsh et al., Nat. Phys. 14, 1163 (2018); S. Sels et al., PRC 99, 044306 (2019).]

Arbitrary subset of experimental hfs for ^{177gs}Au, where statistics is reduced to the level expected for ^{175gs}Au obtained in \approx 4 hour scan.

Beam request

• Part 1:

- 10 shifts: 5 shifts for βDF of ^{178gs}Au, 2 shifts for βDF of ^{178is}Au, 3 shifts βDF of ^{176gs,is}Au
- Part 2:
- estimated yield of ^{175gs}Au: 0.3 ions/s
- 4 shifts: 1 shift setting up/optimization of lasers in NB mode and reference scans, 1 shift location of ^{175gs}Au hfs, 2 shifts scanning ^{175gs}Au
- Total beam request: 14 shifts

Expected ion and fission fragment yields.

	ions/s	FF/day	
		TF	FRLDM
$^{178}\mathrm{Au}^{\mathrm{gs}}$	2.4×10^3	3	1.4×10^3
$^{178}\mathrm{Au^{is}}$	$2.0 imes 10^4$	23	1.2×10^4
$^{176}\mathrm{Au}^{\mathrm{gs}}$	10	0.2	10
$^{176}\mathrm{Au}^{\mathrm{is}}$	20	0.5	31

Spare slides

Nilsson diagram for protons around Z = 79

Original ordering of states.

Possible rearranging of $d_{3/2}$ and $s_{1/2}$ states to obtain $s_{1/2}$ configuration for Z = 79.

Yield estimate for ¹⁷⁵Au

Efficiency: ratio of observed yield and in-target yield calculated by ABRABLA code.

Determination of symmetric/asymmetric fission at IDS

• 1 (annular) Si detector

Energies of 100 fragments measured by single detector from asymmetric fission of ¹⁸⁰Hg (a) and 100 events from Gaussian distribution to simulate symmetric fission (b).

Fission fragment mass distribution using Windmill

• the same configuration of Si detectors is in the new α -decay setup

βDF of ¹⁸⁰TI. Left: uncalibrated singles fission fragment energy spectrum from 1 Si detector. Right: fission fragment mass distribution deduced from calibrated fission fragment coincidences. [J. Elseviers et al., PRC 88, 044321 (2013).]

