

Total absorption spectroscopy of neutron-rich indium isotopes beyond N=82

Aleksandra Fijałkowska, University of Warsaw

Berta Rubio, Instituto de Física Corpuscular – CSIC, Valencia

Muriel Fallot, Subatech, IMT-Atlantique, Universit de Nantes

Luis M Fraile, Grupo de Fisica Nuclear & IPARCOS, Universidad Complutense de Madrid

et~al.

Contact person: Razvan Lică

INTC meeting June 24th, 2020

Physics cases

 $\begin{array}{c|c} \mathbf{N=\!82} & & & \\ & & Q_{\beta} \ (\mathrm{MeV}) \\ ^{134}\mathrm{In} & \mathbf{50} \ \mathbf{-1} \ \mathbf{, 82} + 3 & \mathbf{14.8} \\ ^{133}\mathrm{In} & \mathbf{50} \ \mathbf{-1} \ \mathbf{, 82} + 2 & \mathbf{13.4} \\ ^{132}\mathrm{In} & \mathbf{50} \ \mathbf{-1} \ \mathbf{, 82} + 1 & \mathbf{14.1} \end{array}$

Simple systems on the very neutron side of nuclear landscape.

Understanding such a system is crucial in order to be able to make predictions about the structure of the nuclei further away from magicity.

Ideal case to explore the single particle energies and the two-body matrix elements of the residual interaction.

Important for the understanding the astrophysical r-process.

Studied with high resolution γ -ray detectors and neutron time-of-flight technique detectors, but some questions still remain open.

Promising cases to observe PDR populated in β decay.

ISOLDE provides unique capabilities to study these nuclei

¹³²In

Essential information for the understanding neutron-rich nuclei in the region.

Particle-hole (p-h) configurations create multiplets of excited states.

The identification of these multiplets provides information on the nuclear two-body matrix elements.

J. Benito, PhD thesis, Universidad Complutense de Madrid, (2020)

¹³³In, Neutron-γ-ray competition

V. Vaquero et al., PRL 118, 202502 (2017)

One-neutron knockout from 134Sn

Due to nuclear structure effects, the γ -ray emission may play a significant role in β decay of nuclei in the region southeast of ¹³²Sn.

Ideal case to study Pygmy Dipole Resonance (high $Q\beta$, opposite parity of mother and doughter nuclei, $\Delta J=-1$).

β-delayed neutrons have been measured with neutron time-of-flight technique detector (VANDLE) at ISOLDE (IS632) (M. Madurga, Z. Xu, R. Grzywacz, UTK)

M. Piersa et al., PRC 99, 024304 (2019)

Beta decay of ¹³⁴In and searching for i13/2 s.p. energy

B Rubio et al 2017 J. Phys. G: Nucl. Part. Phys. 44 084004

A. Fijałkowska, PhD thesis, University of Warsaw (2016)

The spectrum corresponds to the excited levels and their feeding

Sensitivity to weak β feedings at high excitation energy

The levels deexcitation paths are taken from high resolution data, where available J. L.

J. L. Tain and D. Cano-Ott, NIM A 571, 728 (2007)
J. L. Tain and D. Cano-Ott, NIM A 571, 719 (2007)
A. Fijałkowska, PhD thesis, University of Warsaw (2016)

A. Fijałkowska, PhD thesis, University of Warsaw (2016)

Beam time request

1.4 GeV proton beam with 2 $\mu \mathrm{A}$ intensity impinging on a UCx target equipped with neutron converter

Count rates took from previous experiments (IS610)

A 70% beam transmission to the LUCRECIA

The total $\gamma\text{-}\mathrm{ray}$ and β detection efficiencies assumed as 80% and 40%

Assumed 1M (A=131 – 133) and 200k (A=134) events in the $\beta-\gamma$ spectrum

2 additional shifts are requested for the measurement of the daughter activities

1 additional shift to measure the β decay of ¹³¹In - pilot beam for fine-tuning the experimental setup and a comparison with high-resolution data.

	Yield (ions/µC)	Intensity at LUCRECIA (ions/s)	$egin{array}{c} { m Requested} \\ { m shifts} \end{array}$
¹³⁴ In	50	70	8
$^{133\mathrm{gs}}\mathrm{In}$	900	1300	3
^{133m} In	400	560	7
132 In	$2 \cdot 10^4$	$5 \cdot 10^3$	1
131 In		$5 \cdot 10^3$	1
		Total: $20 + 2$	= 22 shifts

Beam contamination

IS610, 2016 and 2018

No γ rays from the β decay of $^{134gs}\text{Cs.}$

- ¹³⁴In 127 keV γ rays from ^{134m}Cs Isomeric Transmission cut out by coincidence requirement with the beta particle
- ¹³³In ¹³³Cs is stable, no γ rays form the β decay of ¹³³Ba
- ¹³²In The number of nuclei 132Cs:132In is about 700:1. However, observed activity 132Cs:132In is about 1:4000.

A. Fijałkowska¹, B. Rubio², M. Fallot³, L.M. Fraile⁴, E. Nacher², K. Abrahams⁵, G. de Angelis⁶, A. Algora², J. Agramunt², B. Bastin⁷, A. Beloeuvre³, J. Benito⁴, N. Bernier⁵, M.J.G. Borge⁸, N.T. Brewer⁹, J.A. Briz⁸, T.D. Bucher⁵, C. Ducoin¹⁰, L. Ducroux¹⁰, J. Dudouet¹⁰, S. España⁴, A. Espinosa⁴, M. Estienne³, E. Ganioğlu¹¹, W. Gelletly¹², L. Giot³, R. Grzywacz¹³, V. Guadilla¹, Z. Janas¹, A. Jungclaus⁸, M. Karny¹, R. Kean³, T. King¹³, A. Korgul¹, R. Lică¹⁴, J. López-Herraiz⁴, M. Madurga¹³, M. Martini¹⁵, I. Matea¹⁶, C. Mazzocchi¹, K. Miernik¹, F. Molina¹⁷, A.I. Morales², J.R. Murias⁴, F. de Oliveira⁷, N. Orce⁵, S. E. A. Orrigo², T. Parry¹², A. Perea⁷, S. Péru¹⁸, M. Piersa¹, Z. Podolyak¹², A. Porta³, B.C. Rasco⁹, B. Rebeiro¹⁰, N. Redon¹⁰, K. Rykaczewski⁹, L. Sahin¹¹, D. Sánchez-Parcerisa⁴, K. Siegl¹³, M. Stepaniuk¹, O. Stézowski¹⁰, V. Sánchez-Tembelque⁴, D.W. Stracener⁹, J.L. Tain², O. Tengblad⁸, J.-C. Thomas⁷ and J.M. Udías⁴, V. Valladolid⁴, Z. Xu¹³, R. Yokoyama¹³

¹Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland

²Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46071 Valencia, Spain

³Subatech, IMT-Atlantique, Universit de Nantes, CNRS-IN2P3, F-44307 Nantes, France

⁴Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, E-28040, Spain

⁵Dep. of Phys. and Astronomy, Univ. of the Western Cape, P/BX17, ZA-7535, South Africa

⁶INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

⁷Grand Accelerateur National d'Ions Lourds, Caen, France

⁸Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

⁹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

¹⁰Institut de Physique des 2 Infinis de Lyon, France

¹¹Department of Physics, Istanbul University, 34134 Istanbul, Turkey

¹²Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom

¹³Dep. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

¹⁴ISOLDE-EP, CERN, CH-1211 Geneva 23, Switzerland

¹⁵IPSA, 94200 Ivry-sur-Seine, Paris, France

¹⁶IJCLab, IN2P3-CNRS and Universite Paris-Saclay, France

¹⁷Comisión Chilena de Energa Nuclear, Casilla 188-D, Santiago, Chile

¹⁸CEA, DAM, DIF, Arpajon, France

THANK YOU

