Liquid β -NMR studies of the interaction of Na and K cations with DNA G-quadruplex structures

Spokesperson: Beatrice Karg, Magdalena Kowalska

June 24, 2020

- What are DNA G-Quadruplexes and why should you care?
- What can be achieved beyond conventional NMR?

What are Quadruplexes?

What are Quadruplexes?

PDB-Entries: 148D-Schultze 1993, 2E4I-Matsugami 2006, 2GKU-Luu 2006, 2O3M-Phan 2007, 2KZD-Lim 2010, 2LOD-Marusic 2012, 2M53-Marusic 2013, 2MBJ-Lim 2013, 2MFT-Karsisiotis 2013, 4WO3-Wei 2014, 4U5M-Schmitt 2014, 2N2D-Brcic 2015, 6ERL-Karg 2017, 5MBR-Dickerhoff 2017, 6R9K-Karg 2019

The Importance of Quadruplexes?

How to fold a Quadruplex

Šponer et al., Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies, BBA, 2016

The Problems and the Unknowns

Left: Salgado et al., G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy, Chemical Science, 2015 Middle: Wong et al., Direct NMR detection of the "invisible" alkali metal cations tightly bound to G-quadruplex structures, Biochemical and Biophysical Research Communications, 2005

Sensitivity: β -NMR

Harding et al., Magnetic moments of short-lived nuclei with part-per-million accuracy: Paving the way for applications of β -detected NMR in chemistry and biology, submitted

Sensitivity: β -NMR

The Folding of Quadruplexes with radioactive nuclei

Nucleus	Radioactive half-life	Nuclear spin <i>I</i>	Observed β -asymmetry
²⁶ Na	1.077 s	3	25%
³⁷ K	1.237 s	3/2	8-11%
⁴⁹ K	1.260 s	1/2	-

Three sequences

Thrombin Binding Aptamer (tba)

therapeutic DNA from clinical trials 2 tetrads -> single ion binding site

oncogene promoter sequence
most stable, fast kinetics

native telomeric repeat
structure cation-dependent

c-myc

Solvents and vacuum regimes

Relaxation times and chemical shift

Left: Ida et al., Direct 23Na NMR observation of mixed cations residing inside a G-quadruplex channel, Chem. Commun., 2007 Right: β -NMR measurements, T1 of 26Na in BMIM-HCOO, Oct2018 Samples:

- pure solvents at higher field
- Oligos: ht, c-myc
- pre-folded with ²³Na and unfolded
- relaxation + chemical shift

Technical:

- Ta, Ti, or UC_x targets
- \bullet yield: $10^7 \ ions/s$
- 11 shifts
- spread over 5-6 days

Running in parallel/interchanged:

- \bullet use only every 3rd/4th proton pulse
- 4-6h to prepare and exchange biological samples

Samples:

- ⁴⁹K polarisation tests
- determination of magnetic moments in pure solvents

Technical:

- 37 K: Ti, 49 K: UC_x target
- yield: $^{37}\text{K}:~7\times10^6$ ions/s, $^{49}\text{K}:~2\times10^4$ ions/s
- 7 shifts
- spread over 4-5 days

Samples:

- Oligos: ht, c-myc, tba
- pre-folded with ²³Na and unfolded
- relaxation + chemical shift

Technical:

- 37 K: Ti, 49 K: UC_x target
- yield: $^{37}\text{K}:~7\times10^6$ ions/s, $^{49}\text{K}:~2\times10^4$ ions/s
- 11 shifts
- spread over 5-6 days

- Optical Pumping
- β-asymmetry detection
- online measurements

- high-impact biomolecules
- study dynamics and structures from a novel perspective

Stray field

β-NMR of Alkali Metals in Oligonucleotides

Inside the Magnet

Properties of stable and radioactive isotopes relevant for this proposal

Nucleus	Radioactive half-life	Nuclear spin <i>I</i>	Magnetic moment (μ_N)	Quadrupole moment (mb)	Observed β -asymmetry
²³ Na	-	3/2	2.217499(7)	104	-
²⁶ Na	1.077 s	3	2.849378(20)	-5	25%
³⁷ K	1.237 s	3/2	0.20320(6)	100	8-11%
³⁹ K	-	3/2	0.39147(3)	60	-
⁴⁹ K	1.260 s	1/2	1.33868(8)	-	-

Harding et al., Magnetic moments of short-lived nuclei with part-per-million accuracy: Paving the way for applications of β -detected NMR in chemistry and biology, http://arxiv.org/abs/2004.02820, 2020

Shidling et al., Precision half-life measurement of the β^+ decay of 37 K, Phys. Rev. C, 2014

Kopf et al., Optical pumping of short lived β -radioactive isotopes and the magnetic moment of 37K, Zeitschrift für Physik, 1969

Von Platen et al., Spin exchange polarization and hfs anomaly measurement of β -active 37K, Zeitschrift für Physik, 1971

Minamisono et al., Quadrupole moment of 37K, Physics Letters B, 2008

Carraz et al., The 49K beta decay, Physics Letters B, 1982

Differential Pumping (comsol)

- Pressure with 2mm aperture with various distance between tubes
- 100 Pa at sample

Differential Pumping - Changing Aperture size

β-NMR of Alkali Metals in Oligonucleotides

Differential Pumping - Geant4 detector simulation

- Detector array for Beta asymmetry measurements simulated in GEANT4
- 3D 4.7T Field imported from Bruker data.
- 100k events per bin
- Full beta spectra imported

- 1 shift (for each used isotope): determining the highest pressure with the differential pumping system when signals are still visible
- 1 shift at the start of every beamtime: establishing laser polarisation by HFS scans, optimising laser-atom overlap
- 0.5 shift for every change of the liquid sample): see details above
- 0.3-0.5 shift (for each solvent and G4 configuration): measuring T₁ in one liquid sample, with different parameters optimised
- 0.5-1 shift for each solvent and G4 configuration: performing several NMR scans in one liquid sample (depending on the number of peaks and observed β-asymmetry)