

Beta decay along the rp-process path for accurate stellar weak-decay rates: ⁶⁸Se and ⁷⁰Se

E. Nácher, A. Algora

Instituto de Física Corpuscular – CSIC, Valencia (Spain)

J.A. Briz

Instituto de Estructura de la Materia – CSIC, Madrid (Spain)

et al.

Outline of the presentation

- Introduction: the physics case
- The experimental technique

Beam-time request

22/6/20

E. Nácher

Introduction: The physics case

Type I X-ray bursts

 Binary systems: a neutron star accretes hydrogen-rich material from a low-mass companion (Red-Giant or Main-Seq. star)

 $T_{peak} = 1 - 3 \text{ GK and } \rho = 10^6 - 10^7 \text{ g cm}^{-3}$

Breakout from the hot CNO cycle -> rp-process

22/6/20 E. Nácher

IFIC INSTITUT DE FÍSICA CORPUSCULAR

Introduction: The physics case

- Physical observable:
- Luminosity curve
- Crust composition (no matter released)

Network calculations:

- Decay and reaction rates
- 1300 isotopes included, e.g. in Woosley et al. ApJS 151 (2004)

22/6/20

E. Nácher

22/6/20

Introduction: The physics case

- ...but, what is really in?
- Masses/Binding energies
- Reaction rates: (p,γ) , (α,γ) , (p,α) , CNO cycles...
- Decay rates: β^+ -decay, p-decay, α -decay...

E. Nácher

Introduction: The physics case

- ...but, what is really in?
- Masses/Binding energies
- Reaction rates: (p,γ) , (α,γ) , (p,α) , CNO cycles...
- Decay rates: β^+ -decay, p-decay, α -decay...

 From theory at XRB conditions!! (decay of excited states and <u>continuum EC</u>--> effective Q_{EC} and T_{1/2})

22/6/20 E. Nácher

Part TERRESTRIAL CONDITIONS NEEDFUR VALIDATION ALTERRESTRIAL CONDITIONS recommendation of the constraint of the heor. not en_inuum EC_--> effectiv

-> NEED FOR VALIDATION AT TERRESTRIAL CONDITIONS

22/6/20 E. Nácher

Theorists have used the WP nuclei to constrain their models (SM, QRPA...): ^{72,74}Kr, ^{76,78}Sr, ^{64,66}Ge, ^{68,70}Se

→ energy generation, reaction flow, and final composition

A. Parikh et al., Prog. Part. Nucl. Phys. 69 (2013) 225 J. Jose et al., Astrophys. J. Suppl. 189 (2010) 204

24/6/20 E. Nácher

Theorists have used the WP nuclei to constrain their models (SM, QRPA...): ^{72,74}Kr, ^{76,78}Sr, ^{64,66}Ge, ^{68,70}Se

- → energy generation, reaction flow, and final composition
- → our measurements at ISOLDE used as benchmark

Sarriguren, Physics Letters B 680 (2009) Sarriguren, Phys. Rev. C 83 (2011) Jameel-Un Nabi, Astrophys. Space Sci. 339 (2012)

Mishra et al., Phys. Rev. C 78 (2008) -> Deformed SM

Petrovici, Phys. Rev. C 100 (2019) -> Beyond MF

24/6/20 E. Nácher

IFIC INSTITUT DE FÍSICA

ORPA

Theorists have used the WP nuclei to constrain their models (SM, QRPA...): ^{72,74}Kr, ^{76,78}Sr, ^{64,66}Ge, ^{68,70}Se

 $\rightarrow \text{ energy g} \rightarrow \beta - \text{decay Spectroscopy of } ^{68,70}\text{Se}$ ition $\rightarrow \text{ our mea} \quad \text{almost inexistent!!}$

Sarriguren, Physics Letters B 680 (2009) Sarriguren, Phys. Rev. C 83 (2011) Jameel-Un Nabi, Astrophys. Space Sci. 339 (2012)

Mishra et al., Phys. Rev. C 78 (2008) -> Deformed SM

Petrovici, Phys. Rev. C 100 (2019) -> Beyond MF

24/6/20 E. Nácher

QRPA

- We propose to measure accurately the B(GT) distribution in the β⁺/EC-decay ^{68,70}Se using the Total Absorption Spectroscopy (TAS) technique.
- A complementary measurement at IDS with the gamma + conversion electron (SPEDE) setup will be requested as well -> Needed for the TAS data unfolding

Why don't we measure just at the IDS?

- Medium mass and heavy nuclei: large level density at high energy.
- Very fragmented $I_{\beta/EC}$ distribution and γ de-excitation pattern.

Why don't we measure just at the IDS?

- Medium mass and heavy nuclei: large level density at high energy.
- Very fragmented $I_{\beta/EC}$ distribution and γ de-excitation pattern.
- HPGe arrays do the great job of the level scheme and gamma branching ratios, but not so great at $I_{\beta/EC}$ and B(GT)

Hardy et al., Physics Letters B 71 (1977)

Why don't we measure just at the IDS?

Total Absorption Spectroscopy (Ideal case)

- Lucrecia, the TAS at ISOLDE
 - Main Nal(Tl) cylinder: Ø38 cm x 38 cm
 - Ancillary detectors: Ge telescope + plastic scintillator

Beam-time request

Within the TISD program:

assessment of the production of ^{68,70}Se using a ZrO₂ fibre target and extracting either the molecular form: ^{68,70}SeCO⁺ from a ZrO2-MK5 (*) unit or the atomic form using RILIS (**). <u>On advice from the TAC, our group is eager</u> to participate in the assessment/developments.

(*) Baumann et al., PRC 50 (1994) --> 120 at/µC of ⁶⁸Se Hurst et al., PRL 98 (2007) --> 6e5 at/s of ⁷⁰Se ... but not seen during our 1st trial in 2016!!

(**) Chrysalidis et al., Eur. Phys. J. A (2019) --> 10 at/µC (?) ... under study

24/6/20

E. Nácher

Beam-time request

Within the TISD program:

assessment of the production of ^{68,70}Se using a ZrO₂ fibre target and extracting either the molecular form: ^{68,70}SeCO⁺ from a ZrO2-MK5 unit or the atomic form using RILIS. <u>On advice from the TAC, our group is eager to</u> <u>participate in the assessment/developments</u>.

- Based on the "reasonable" assumption of 20 at/s produced and extracted, we request a total of 18 shifts:
- 8 shifts to measure ⁶⁸Se decay and its daughter decay with the TAS.
- 2 shifts to measure ⁷⁰Se decay and its daughter decay with the TAS.
- 6 shifts to measure ⁶⁸Se decay with the IDS combined gamma-conversion electron setup.
- 2 shifts to measure ⁷⁰Se decay with the IDS combined gamma-conversion electron setup.

Beta decay along the rp-process path for accurate stellar weak-decay rates: ⁶⁸Se and ⁷⁰Se

<u>E. Nácher¹, A. Algora¹, J.A. Briz²</u>, B. Rubio¹, J.L. Taín¹, W. Gelletly³, L.M. Fraile⁴, K. Abrahams⁵, J. Agramunt¹, A. Andreyev⁶, G. de Angelis⁷, A. Avaa⁸, A. Beloeuvre⁹, J. Benito⁴, N. Bernier⁵, M.J.G. Borge², T.D. Bucher⁵, L. Caballero¹, D.M. Cox¹⁰, J. Cubiss⁶, U. Datta¹¹, H. De Witte¹², J. Díaz-Ovejas², C. Domingo¹, C. Ducoin¹³, L. Ducroux¹³, J. Dudouet¹³, M. Estienne⁹, M. Fallot⁹, A. Fijalkowska¹⁴, E. Ganioglu¹⁵, L. Giot⁹, V. Guadilla¹⁴, A. Illana¹⁶, Z. Janas¹⁴, D. Jenkins⁶, P. Jones⁸, J. José¹⁷, A. Jungclaus², M. Karny¹⁴, R. Kean⁹, G. Kiss¹⁸, R. Lică^{19,20}, C. Mazzocchi¹⁴, N. Marginean²⁰, K. Miernik¹⁴, F. Molina²¹, A.I. Morales¹, O. Moreno⁴, J.R. Murias⁴, J. Ojala¹⁶, N. Orce⁵, S.E.A. Orrigo¹, J. Pakarinen¹⁶, P. Papadakis²², A. Perea², M. Piersa¹⁴, Z. Podolyak³, A. Porta⁹, B. Rebeiro¹³, N. Redon¹³, V. Sánchez-Tembleque⁴, L. Sahin¹⁵, C. Sotty²⁰, M. Stepaniuk¹⁴, O. Stézowski¹³, M. Stryjczyk¹², O. Tengblad², J.M. Udías⁴, P. Van Duppen¹², S. Viñals² and N. Warr²³.

1 Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46071 Valencia, Spain 2 Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain 3 Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom 4 Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain 5 Department of Physics and Astronomy, University of the Western Cape, P/BX17, ZA-7535, South Africa 6 Department of Physics, University of York, York, YO10 5DD, United Kingdom 7 INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy 8 iThemba Laboratory for Accelerator Based Sciences, Somerset West, South Africa 9 Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France 10 Department of Physics, Lund University, SE-22100 Lund, Sweden 11 Saha Institute of Nuclear Physics, Kolkata 12 KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium 13 IP2I (Institut de Physique des 2 Infinis, Lyon) 14 Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland 15 Department of Physics, Istanbul University, 34134 Istanbul, Turkey 16 Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland 17 Universitat Politècnica de Catalunya, Barcelona (Spain) 18 Institute of Nuclear Research of the Hungarian Academy of Sciences, 4026 Debrecen, Hungary 19 ISOLDE-EP, CERN, CH-1211 Geneva 23, Switzerland 20 "Horia Hulubei" National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest, Romania 21 Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile 22 STFC DaresburyLaboratory, WarringtonWA44AD, United Kingdom 23 Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

decay along the rp-process Beta accurate stellar weak-decay rates: 68Se

E. Nácher¹, A. Algora¹, J.A. Briz², B. Rubio¹, J.L. Taín¹, W. Gelletly³, L.M. Fraile⁴ G. de Angelis⁷, A. Avaa⁸, A. Beloeuvre⁹, J. Benito⁴, N. Bernier⁵, M.J.G. Be Cubiss⁶, U. Datta¹¹, H. De Witte¹², J. Díaz-Ovejas², C. Domingo¹, C. Dv Fallot⁹, A. Fijalkowska¹⁴, E. Ganioglu¹⁵, L. Giot⁹, V. Guadilla¹⁴, A Jungclaus², M. Karny¹⁴, R. Kean⁹, G. Kiss¹⁸, R. Lică^{19,20}, C. M Morales¹, O. Moreno⁴, J.R. Murias⁴, J. Ojala¹⁶, N. Orce⁵, S.F. Z. Podolyak³, A. Porta⁹, B. Rebeiro¹³, N. Redon¹³. Stézowski¹³, M. Stryjczyk¹², O. Tengblad², J.M. Udíc

ing guarants (A vision and A vi Accord by only Universe of the new of the only of the 1 Instituto de Física Corpuscular, CSIC - Universidad de Vale 2 Instituto de Estructura de la Materia, CSIC, E-28006 M 3 Department of Physics, University of Surrey, GU27 4 Grupo de Física Nuclear and IPARCOS, University 5 Department of Physics and Astronomy, U 6 Department of Physics, University of X 7 INFN, Laboratori Nazionali di Lo 8 iThemba Laboratory for Accel 9 Subatech, IMT-Atlantic 10 Department of Phys 11 Saha Institute 12 KU Leuver 13 IP2I (J 14 F2 alunya, Barcelona (Spain) arch of the Hungarian Academy of Sciences, 4026 Debrecen, Hungary CH-1211 Geneva 23, Switzerland National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest, Romania 21 Con nilena de Energía Nuclear, Casilla 188-D, Santiago, Chile 22 STFC aresburyLaboratory, WarringtonWA44AD, United Kingdom 23 Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

HEADER IN. ESTIENNE⁵, M. **CONTROL** CONKINS⁶, P. Jones⁸, J. José¹⁷, A. **CONT**, K. Miernik¹⁴, F. Molina²¹, A.I. , P. Papadakis²², A. Perea², M. Piersa¹⁴, C. Sahin¹⁵, C. Sotty²⁰, M. Stepaniuk¹⁴, O. Lals² and N. Warr²³.

