

www.cern.ch

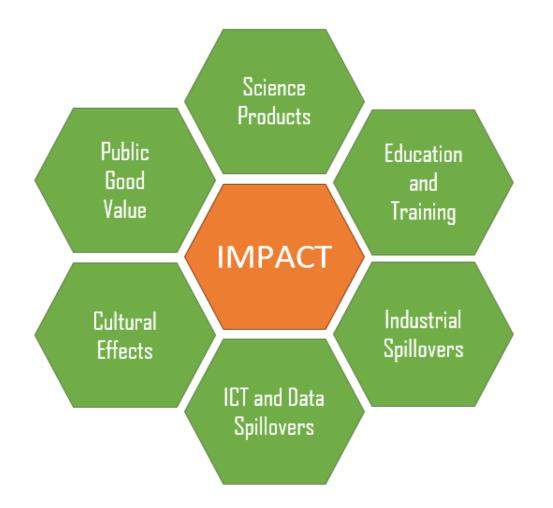
SOCIO ECONOMIC IMPACT ANALYSIS

Status of baseline assumptions

Presenter: Irene del Rosario Crespo Garrido (University of Santiago de Compostela (ES)) ATS-DO (Accelerators and Technology Sector-Directorate Office) Collaborators:

- Emanuela Sirtori, Jessica Catalano and Francesco Giffoni (CSIL)
- Gabriele Piazza (LSU)
- María Luz Loureiro García (USC)
- Johannes Gutleber (CERN)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.


PREPARATORY WORK FOR SOCIO-ECONOMIC IMPACT ANALYSIS

- As preparatory work, the baseline assumptions and impact analysis input paramters need to be compiled.
- The results are captured in deliverable D12.951754.

TOPICS FOR THE SOCIO-ECONOMIC IMPACT ANALYSIS

FUNDAMENTAL ASSUMPTION – TIME RANGE

• Will be based on the project schedule.

First time signficant spending occurs:

Year #	Year	Experiment project	Accelerator project	Infrastructure project	Comment
-	2026		Design 1	Tender 1	
-	2027		Design 2	Tender 2	
 1	2028	Design 1	Design 3	Preparation 1	First significant capital expenditure
2	2029	Design 2	Design 4	Preparation 2	marks first project year for socio- economic impact analysis
3	2030	Design 3	Design 5	Construction 1	Start of underground constructi
4	2031	Design 4	Design 6	Construction 2	
5	2032	Design 5	Construction 1	Construction 3	
6	2033	Design 6	Construction 2	Construction 4	
7	2034	Construction 1	Construction 3	Construction 5	
8	2035	Construction 2	Construction 4	Construction 6	
9	2036	Construction 3	Construction 5	Construction 7	Civil engineering completed
10	2037	Construction 4	Construction 6	Construction 8	
11	2038	Construction 5	Construction 7	Construction 9	Technical infrastructure completed
12	2039	Construction 6	Construction 8	Commissioning	Technical infrastructure commissioning
13	2040	Commissioning	Commissioning		Injector and booster commissionin
14	2041	Data taking 1	Op. Z pole 1		Low luminosity / physics commissioning
15	2042	Data taking 2	Z pole 2		
16	2043	Data taking 3	Z pole 3		
17	2044	Data taking 4	Z pole 4		RF re-configuration
18	2045	Data taking 5	WW 1		
19	2046	Data taking 6	WW 2		RF re-configuration
20	2047	Data taking 7	HZ 1		
21	2048	Data taking 8	HZ 2		
22	2049	Data taking 9	HZ 3		
23	2050	Upgrade	Upgrade		RF upgrade (800 MHz)
24	2051	Data taking 10	Top 1		
25	2052	Data taking 11	Top 2		
26	2053	Data taking 12	Тор 3		
27	2054	Data taking 13	Top 4		
28	2055	Data taking 14	Top 5		Last year of operation
29	2056	Analysis 1	Retirement 1		· · · · · · · · · · · · · · · · · · ·
 30	2057	Analysis 2	Retirement 2		

Only look at the research infrastructure:

- Particle accelerators.
- Experiments.
- Technical infrastructures required to operate the accelerators and experiments.

Until 2 years after the end of the programme:

CERN

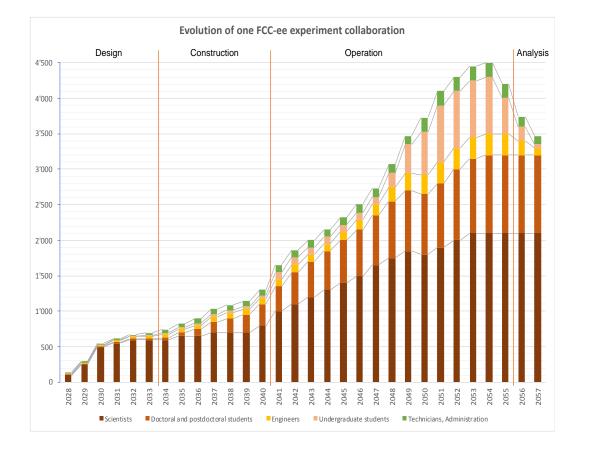
SCIENCE PRODUCTS

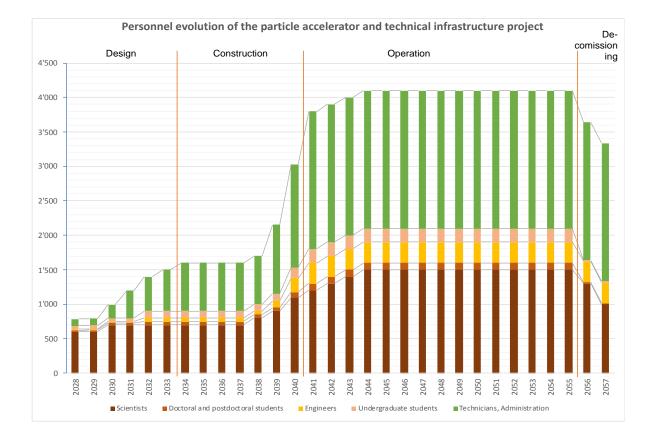
What is existing today as starting point:

Experimental physics publications from	Publications citing P0	Publication citing P1
the LHC experiments (P0) (1993-2025)	(P1) (1993-2050)	(1993-2050)
22 900	242 600	862 100

- Extend analysis to technology and engineering publications and scientific products.
- Improve the bibliometric model, to include also pre-prints, conference proceedings,...
- Obtain additional reliable data on the citations (common with Springer Nature).
- Consider the weight of the impact factors (refereed journals, conference precentations, pre-prints).
- Improve the estimation of the economic value → Economic value proxied (e.g.) by the production opportunity cost.

EDUCATION AND TRAINING


What is existing today as starting point:


- Statistical inference on survey data demonstrated the **existence of a salary premium** experienced by early-stage researcher that participate in a large-scale experimental physics programme as compared to their peers (i.e. without the training experience at CERN). The salary premium ranges from 5% and 12%.
- Monetary value → on average 150 000 EUR cumulative salary increase per student throughout his/her career (hypothesis 30 years career).

- Extend the analysis to the particle accelerator and technology sector.
- Extend the analysis to highly qualified professionals (large amount of engineers and technicians will be required for the FCC construction).
- **Ongoing 3 years survey** based on primary data from a new, targeting current and former doctoral students.
- Salary premium study based on desk research and secondary data analysis to reveal salary premium with respect to persons not participating in an experimental physics research programme.
- Objective → extend and fine tune the existing assessment of the salary premium.

FUNDAMENTAL ASSUMPTION – PERSON INFLOW FORECAST

INDUSTRIAL SPILLOVERS

What is existing today as starting point:

• Data obtained from the time period between 1995 to 2015 (LHC programme)

COMPANIES	COUNTRIES	CONTRACTS
4 204	47	33 414

- Increase in the profitability of a company contributing with high technology intensity level works after having obtained a contract for a large scale research infrastructure project.
 - Past studies since the 1980ies demonstrate a positive effect for high-tech suppliers.
 - The estimation relies on the average utility/sales ratio (USR).
 - Past studies estimated an average USR around 3:
 - The company manages to obtain 3 times the contract value through follow-up projects/contracts.

- **Review USR** \rightarrow update with more recent data.
- Study regional impact potentials for high-tech → by London School of Economics.

ICT and DATA SPILLOVERS

What is existing today as starting point:

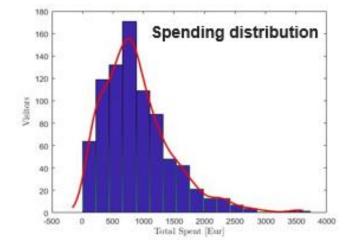
• Analysis for **GEANT4** and **ROOT** existing as starting points.

- Three new cases have been identified:
 - **ZENODO** (CERN development, EU portal for publications and data in H2020)
 - INDICO (CERN development, event and meeting management)
 - **Protonmail** (CERN spinoff, secure e-mail platform and service)
- Objectives:
 - Establish socio-economic impact analysis models for different, selected ICT elements that can serve as proxies for typical technologies that will also be developed during the FCC period.
 - Socio-economic impact analysis for selected ICT elements, depending on the availability of adequate econometric data and a validated impact assessment model.
 - Evaluate the Willingness to Pay with surveys addressed to users for ICT services.

CULTURAL EFFECTS – CREATION and USE of MEDIA

What is existing today as starting point:

- Consume time value based analysis for selected channels.
- Analysis of the volumen evolution for selected channels.
 - Youtube.
 - Social media (Facebook, Twitter and Instagram)
 - Permanent exhibitions.
 - LHC experiment web pages.


- Extend to newly upcoming social media channels.
- Review and establish the volumen estimates for the coming years based on historic evolution.
- Extend the time-based value analysis to the reactions, citations... (social media is powerful because it amplifies initial information by decentralised distribution).

CULTURAL EFFECTS – ON SITE VISITORS

What is existing today as starting point:

- Known number of visitors at CERN and LHC experiments.
- Spending and time value of these on-site visitors:
 - Groups
 - Individuals

- Identified the causal relation between visitors and LHC research programme.
- Based on a survey between 2018 and 2019.

- Establish an estimate of on-site visitors for the FCC programme (person inflow).
- Challenge: continuous refinement of on-site visitor spendings due to COVID19 situation.

PUBLIC GOOD VALUE

What is existing today as starting point:

- What an FCC is worth for a registered taxpayer per year with respect to what the taxpayer contributes per year to CERN in France and in Switzerland.
- Revealed the key parameters that determine the public good value.

- Establish a value model that can be applied for other countries based on the identified public good value key parameters.
- Estimate the public good value of a FCC programme in a set of countries for which the model can be reliably validated.

I appreciate your questions concerning what I have presented to you.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.