

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Possible Beam Studies at DA PNE

JACQUELINE KEINTZEL

TU WIEN, VIENNA, AUSTRIA

CERN, GENEVA, SWITZERLAND

FCC November Week

Acknowledgements:

Michael Benedikt, Oscar Blanco, Alessandro Drago, Catia Milardi, Rogelio Tomás, Frank Zimmermann, Mikhail Zobov 10th November 2020

The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 951754.

Introduction $DA\Phi NE$

Ref: [1,2]

- Injection linac and damping ring
- 510 MeV beam energy
- 2 beam crossings
- 1 interaction point
 - Now: Siddharta-2, no solenoid
 - Before: Kloe-2, solenoid
- First collider with crab waist collision scheme

Test of "Crab-Waist" Collisions at the DAPNE Φ Factory

PHYSICAL REVIEW LETTERS

PRL 104, 174801 (2010)

JACQUELINE KEINTZEL POSSIBLE BEAM STUDIES AT DAΦNE

Introduction $DA\Phi NE$

- Electrodes for e-cloud mitigation
- No periodicity \rightarrow each ring is one cell
- Independently powered quadrupoles and sextupoles
- Very flexible optics e.g. collisions with negative mometum compaction factor

JACQUELINE KEINTZEL POSSIBLE BEAM STUDIES AT DAΦNE

 $\beta_x(m), \beta_y(m)$

Ref: [3-5]

DA Φ **NE and FCC-ee**

Parameter					
	Z	WW	ZH	tt	DAFNE
Circumference [km]		0.098			
Beam Energy [GeV]	45.6	80	120	182.5	0.510
Hor. Emittance [nm]	0.27	0.84	0.63	1.46	260
βx* [cm]	15	20	30	100	26
βy* [mm]	0.8	1.0	1.0	1.6	9
Bunch Length with SR/BS [mm]	3.5/12.1	3.0/6.0	3.3/5.3	2.0/2.5	1.4
Beam Current [A]	1.390	0.147	0.029	0.0054	2.45 (-) / 1.4 (+)

- Electron-positron circular collider
- Comparable beam currents
- Crab-waist collision scheme

- 3 Steps:
 1) Large Piwinski angle
 2) βy comparable to overlap area size
 3) Crab-waist transformation
- Special crab sextupoles

JACQUELINE KEINTZEL POSSIBLE BEAM STUDIES AT DA ONE

$DA\Phi NE$ and FCC-ee

Parameter					
	Z	WW	ZH	tt	DAFNE
Circumference [km]		0.098			
Beam Energy [GeV]	45.6	80	120	182.5	0.510
Hor. Emittance [nm]	0.27	0.84	0.63	1.46	260
βx* [cm]	15	20	30	100	26
βy* [mm]	0.8	1.0	1.0	1.6	9
Bunch Length with SR/BS [mm]	3.5/12.1	3.0/6.0	3.3/5.3	2.0/2.5	1.4
Beam Current [A]	1.390	0.147	0.029	0.0054	2.45 (-) / 1.4 (+)

- Electron-positron circular collider
- Comparable beam currents
- Crab-waist collision scheme

 \longrightarrow DA Φ NE can test FCC-ee challenges!

Possible Studies at DA Φ **NE**

- High current operation
 - Impedance, wake field effects, ..
- E-cloud suppression studies
- Test FCC-ee feedback system
- Impact of experiments with and without solenoid
 - Benchmark codes, monitor luminosity
- Studies of the crab-waist collision scheme
 - Operation with crab-waist collisions
 - Lattice and optics tolerances
 - Measuring and correction and (crab-waist) optics
 - Luminosity increase thanks to crab-waist
- Possibility to connect BPMs to Libera Modules to record turn-by-turn data

Already successfully performed or presently ongoing also in the framework of the FCC-ee study

Alignment Sensitivity

- Final focus quadrupole location essential for crab-waist
 - Huge impact on phase advance between crab sextupoles
 - Moving final focus quadrupoles by 2 cm this spring improved optics

- Off-center orbit through (crab-) sextupoles (CS) lead to tune shift
 - CS off and generate knobs for 1 mm orbit
 - CS on and measure tune shift
 - Increase knob strength until initial tune reached to determine CS transverse offset

FCC-ee:

Sensitivity of misalignments on crab-waist
Techniques to identify and correct misalignments

7 (FCC

Coupling Correction

- Coupling correction for high intensity beams
 - Rotate quadrupoles to reduce tilt and coupling
 - Switch on skew quadrupoles

Starting point with new optics: 14 % transverse coupling for electron ring, together with beam tilt After corrections: 0.3 % transverse coupling for electron ring and beam is no longer tilted

FCC-ee:

Operation and hands-on experience with optics corrections
 Study high current beams

JACQUELINE KEINTZEL POSSIBLE BEAM STUDIES AT DAΦNE

Possible FCC-ee Feedback Test

Ref: [9-11]

Very fast instabilities (growth rates up to 3 revolution turns) 4 feedback systems (4 stations) Foreseen damping rate: 2.5 turns FCC-ee main ring PU4 Station1 PU1 Station2 FCC-ee main ring PU3 Station 3

Extremely fast instabilities (growth rates up to 1-2 revolution turns)

Cicker3

4 feedback systems anticipating correction kicks

- Dynamic beam simulations for FCC-ee main rings and booster exhibit extremely fast coupled bunch instabilities of the order of few revolution turns → Powerful new feedback design required
- In DA Φ NE positron ring very rapid horizontal instability \rightarrow multiple cooperative feedback scheme has been installed

Single feedback dumping rate 128 ms⁻¹

Double feedback dumping rate 234 ms⁻¹

Since 2008 a new double feedback technique is implemented successfully

FCC-ee:

✓ Test possible FCC-ee feedback at DAΦNE

Measure damping performance with different beam and layout conditions

PU2

JACQUELINE KEINTZEL POSSIBLE BEAM STUDIES AT DAΦNE

Summary

- $DA\Phi NE$ is demonstrating high current operation and crab-waist collisions for FCC-ee
 - First collider with crab waist collision scheme \rightarrow two runs with two different detectors
 - High current operation with crab-waist
- Presently ongoing studies useful for FCC-ee
 - Lattice misalignements and impact on crab-waist optics
 - Optics measurements and correction which allow high current operation
- Possible studies in the framework of the FCC Innovation Study
 - Analyse new crab-waist optics and implications on performance
 - Quantify crab-waist and lattice tolerances
 - High current operation
 - E-cloud mitigation

• Test possible FCC-ee feedback system

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Possible Beam Studies at DAΦNE

Thank you!

JACQUELINE KEINTZEL

TU WIEN, VIENNA, AUSTRIA

CERN, GENEVA, SWITZERLAND

FCC November Week

10th November 2020

The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 951754.

Acknowledgements:

Michael Benedikt, Oscar Blanco, Alessandro Drago, Catia Milardi, Rogelio Tomás, Frank Zimmermann, Mikhail Zobov

References

- [1] http://edu.lnf.infn.it/wp-content/uploads/2016/06/01-Poster-DAFNE.pdf
- [2] M. Zobov et al., Test of crab-waist collisions at the DA Φ NE Φ factory, Phys. Rev. Letters 104, 174801, 2010.
- [3] C. Milardi, DAFNE as Open Accelerator Test Facility: DAFNE-TF, presented at the DAFNE TF Workshop, 17th December 2018.
- [4] M. Zobov, et al. DAFNE experience with negative momentum compaction, presented at the European Particle Accelerator Conference (EPAC06), Edinburgh, Scotland, 2006.
- [5] J. Keintzel et al., Breif report from DAFNE Commissioning, 113th FCC-ee Optics Design Meeting, 6th March 2020.
- [6] M. Benedikt (ed), FCC-ee: The Lepton Collider, Eur.Phys. J. Special Topics 228, 261 (2019)
- [7] P. Raimondi, D. Shatilov, M. Zobov, Beam-beam issues for colliding schemes with large piwinksi angle and crabbed waist, arXiv:physics/0702033, 2007.
- [8] M. Zobov et al., Crab-waist collision scheme: a novel approach for particle colliders, arXiv:1608.06150 (2016).
- [9] A. Drago, Feedback systems for FCC-ee, presented at the eeFACT2016, TUT3AH9, arXiv:1704.06162, 2016.
- [10] A. Drago, Feedback systems for FCC-ee, presented at the 8th Low Emittance Ring Workshop, 2020.
- [11] A. Drago, DAFNE horizontal feedback upgrade, presented at the Particle Accelerator Conference 2009 (PAC09), Vancouver, Canada, 2009.

