

Tracks Reconstruction with BDT-GBM

ANGELO SANTOS - 2020/06/10

SPRACE

Measuring Momentum (I)

$$F_{cp} = F_{mag}$$

$$\frac{m\overrightarrow{v}^2}{R} = q\overrightarrow{v} \times \overrightarrow{B}$$

$$mv = qBR$$

$$p_T = qBR$$

$$p(x,y) = \sqrt{p_x^2 + p_y^2} \equiv p_T$$

Measuring Momentum (II)

https://indico.cern.ch/event/96989/contributions/2124495/attachments/1114189/1589705/WellsTracking.pdf

$$p_T[GeV/c] = 0.3 \cdot B[T] \cdot R[m]$$

Computing Radius and Constant (q.B)

Computing pT from Recontructed Tracks

- Compute constant (q.B) from training samples
 - 21,000 tracks
- Validate calculation of pT with optimization sample
 - 3,000 tracks
- Appy results to application sample
 - 6,000 tracks

Other Tasks

Trying to Improve Reconstruction (I)

- Using cylindrical coordinates (ρ, φ, z)
 - Large errors from ρ
 - Similar problem as datasets containing tracks with and without holes
 - 5th hit from 4 previous ones
 - $= 2^5 = 32$ possibilities
 - 21000 tracks /32 possib. ~ 656 tracks/possib.
 - \blacksquare 4⁵ = 1024 possibilities
 - 21000 tracks / 1024 possib. ~ 20 tracks/possib.

Results with Cylindrical Coordinates

Trying to Improve Reconstruction (II)

- Using cartesian coordinates (x, y, z)
 - Dividing training samples to get more than one predicted values
 - 10 training samples (21,000/10 = 10 poss. x 2,100 tracks)
 - 03 training samples (21,000/03 = 03 poss. x 7,000 tracks)
 - 02 training samples (21,000/02 = 02 poss. x 10,500 tracks)
 - Large errors from x coordinates
- To-do list
 - Checking scripts
 - Trying to understanding large errors

To-Do List

- Understand problems with datasets
- Compute track scores using Kaggle scores
- Compute pT for tracks from the application step