LATTICE FORMULATION OF AXION-INFLATION: APPLICATION TO PREHEATING

DANIEL G. FIGUEROA IFIC, Valencia, Spain

Zooming in on Axions in the Early Universe, CERN, 22-26 June 2020

TWO TOPICS

Part I: LATTICE FORMULATION OF $\phi F \tilde{F}$

Part II: PREHEATING AFTER AXION-INFLATION

TWO TOPICS

Part I: LATTICE FORMULATION OF ϕFF [1] arXiv:1705.09629 (NPB 926 (2018) 544) [2] arXiv:1707.09967 (JHEP 04 (2018) 026) [3] arXiv:1904.11892 (JHEP 10 (2019) 142)

Part II: PREHEATING AFTER AXION-INFLATION

with	M. Shaposhnikov	[1,2,3]
	A. Florio	[3]

TWO TOPICS

Part I: LATTICE FORMULATION OF $\phi F \tilde{F}$

Part II: PREHEATING AFTER AXION-INFLATION [4] arXiv:1812.03132 (JCAP 06 (2019) 002) [5] Fun with Inflation (in progress) 2020

with	J. R. Canivete Cuissa	[4]
	J. Lizarraga	[5]
and	M. Peloso	[5]
	J. Urrestilla	[5]

Part 1

$\begin{array}{l} \mathbf{LATTICE}\\ \mathbf{FORMULATION}\\ \mathbf{of} \ \phi F \tilde{F} \end{array}$

Motivation ?

A CMB in adreement, with structures of the scale solution of the side of the scale solution of the scale solut N OTStiftsymmetry (broke Shall a single state of the second s At the Way of the transmitted o

A State of the second of the s FISOUPERING COSTONER

 $= \frac{1}{2} = \frac$

In 1995 to constant of the edicativity

THE SECTION PERMIT AND A CONSERVE WITH THE CONFICUENCE SOUPLING AND A CONFICUENCY ACTOR AND A CONFICUENCE SOUPLING AND A CONFICUENCE SOUPLING A CONFICIENCE SOUPLINA A CONFICIENCE SOUPLINE A CONFICIENCE SOU

The action bages to beher fields

The second call and the se

V nature has chere

People and the second s SIL SIL

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

With shift supportions and an taige that the sector of the

APE is a contraction of the second of the se F S OV FOOD COS TRIEs a

 $= \frac{1}{2} = \frac$

E A A BE BERTY DE A BE

The action pages to beher fields

TB in an rechtester in sind aussam wirster for the statest model greement with sind outres of some of some of some of a some o

s the advantage that of the set o

South and the providence of the south of the southoes of the south of the southoes of the southoes of the sou CONTROST OF THE CCD ASIGN FRAT

LATTICE FORMULATION of $\phi F \tilde{F}$ **Axion-Inflation**

GW energy spectrum today

LATTICE FORMULATION of $\phi F F$ **Axion-Inflation**

GW energy spectrum today

Implementation

LATTICE FORMULATION of $\phi F \tilde{F}$

Continuum

$$S = \int d^4x \sqrt{-g} \left(\underbrace{\frac{1}{2}}_{\text{pl}} m_{\text{pl}}^2 R - \frac{1}{2}}_{\text{gravity}} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \underbrace{\frac{1}{4}}_{\text{H}\mu\nu} F^{\mu\nu} + \underbrace{\frac{\phi}{4\Lambda}}_{\text{H}\mu\nu} \tilde{F}^{\mu\nu} \right)$$

$$\underbrace{\text{Gauge Interaction}}_{\text{(GR)}}$$

$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\nu} , \quad \tilde{F}_{\mu\nu} \equiv \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma} , \quad \epsilon^{0123} \equiv \frac{1}{\sqrt{-g}} = \frac{1}{a^{3}(t)}$$

LATTICE FORMULATION of $\phi F \tilde{F}$ Continuum

$$\begin{split} \dot{\pi}_{\phi} &= -3H\pi_{\phi} + \frac{1}{a^2} \vec{\nabla}^2 \phi - m^2 \phi + \frac{1}{a^3 \Lambda} \vec{E} \cdot \vec{B}, \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2} \vec{\nabla} \times \vec{B} - \frac{1}{a\Lambda} \pi_{\phi} \vec{B} + \frac{1}{a\Lambda} \vec{\nabla} \phi \times \vec{E} \\ \vec{\nabla} \cdot \vec{E} &= -\frac{1}{a\Lambda} \vec{\nabla} \phi \cdot \vec{B} \quad \text{(Gauss Law)} \end{split}$$

- .

$$\pi_{\phi} \equiv \dot{\phi}, \quad E_i \equiv \dot{A}_i - \partial_i A_0, \quad B_i \equiv \epsilon_{ijk} \partial_j A_k,$$

LATTICE FORMULATION of $\phi F \tilde{F}$ Continuum

$$\begin{split} \dot{\pi}_{\phi} &= -3H\pi_{\phi} + \frac{1}{a^2}\vec{\nabla}^2\phi - m^2\phi + \frac{1}{a^3\Lambda}\vec{E}\cdot\vec{B}, \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{1}{a\Lambda}\pi_{\phi}\vec{B} + \frac{1}{a\Lambda}\vec{\nabla}\phi\times\vec{E} - \frac{\phi}{a\Lambda}\underbrace{\left(\dot{\vec{B}} - \vec{\nabla}\times\vec{E}\right)}_{=0} \\ \vec{\nabla}\cdot\vec{E} &= -\frac{1}{a\Lambda}\vec{\nabla}\phi\cdot\vec{B} - \frac{\phi}{a\Lambda}\underbrace{\vec{\nabla}\cdot\vec{B}}_{=0}, \text{ (Gauss Law)} \end{split}$$

$$\partial_{\mu}(\sqrt{-g}\tilde{F}^{\mu\nu}) = 0 \iff \begin{cases} \dot{\vec{B}} - \vec{\nabla} \times \vec{E} = 0\\ \vec{\nabla} \cdot \vec{B} = 0 \end{cases}$$

LATTICE FORMULATION of $\phi F \tilde{F}$

Comoving Coordinates

Comoving Coordinates

'Latticesizing'

'Latticesizing'

 $V_{\mu\nu} \equiv V_{\mu}V_{\nu,+\hat{\mu}}^{*}V_{\mu,+\hat{\nu}}^{*}V_{\nu}^{*} \simeq e^{-idx_{\mu}dx_{\nu}[F_{\mu\nu}+\mathcal{O}(\delta x)]}$ (Plaquette)

 $V_{\mu\nu} \equiv V_{\mu}V_{\nu,+\hat{\mu}}^{*}V_{\mu,+\hat{\nu}}^{*}V_{\nu}^{*} \simeq e^{-idx_{\mu}dx_{\nu}[F_{\mu\nu}+\mathcal{O}(\delta x)]}$ (Plaquette)

 $\begin{cases} \mathcal{R}e\{V_{\mu\nu}\} \longrightarrow 1 - \frac{1}{2}dx_{\mu}^{2}dx_{\nu}^{2}F_{\mu\nu}^{2} + \mathcal{O}(\delta x^{5}), \quad \mathbf{l} = \mathbf{n} + \frac{1}{2}\hat{\mu} + \frac{1}{2}\hat{\nu} \\ \mathcal{I}m\{V_{\mu\nu}\} \longrightarrow -dx_{\mu}dx_{\nu}F_{\mu\nu} + \mathcal{O}(\delta x^{3}), \quad \mathbf{l} = \mathbf{n} + \frac{1}{2}\hat{\mu} + \frac{1}{2}\hat{\nu} \end{cases}$

 $V_{\mu\nu} \equiv V_{\mu}V_{\nu,+\hat{\mu}}^* V_{\mu,+\hat{\nu}}^* V_{\nu}^* \simeq e^{-idx_{\mu}dx_{\nu}[F_{\mu\nu}+\mathcal{O}(\delta x)]}$ (Plaquette)

 $\begin{cases} \sum_{n} \frac{1}{4} F_{\mu\nu}^{2} \cong -\frac{1}{2} \sum_{n} \frac{\mathcal{R}e\{V_{\mu\nu}\}}{dx_{\mu}^{2} dx_{\nu}^{2}} = -\frac{1}{4} \sum_{n} \frac{(V_{\mu\nu} + V_{\mu\nu}^{*})}{dx_{\mu}^{2} dx_{\nu}^{2}} + \mathcal{O}(\delta x^{2}) \\ \sum_{n} \frac{1}{4} F_{\mu\nu}^{2} \cong \sum_{n} \frac{1}{4} \frac{\mathcal{I}m^{2}\{V_{\mu\nu}\}}{dx_{\mu}^{2} dx_{\nu}^{2}} = -\sum_{n} \frac{1}{4} \frac{(V_{\mu\nu} - V_{\mu\nu}^{*})^{2}}{dx_{\mu}^{2} dx_{\nu}^{2}} + \mathcal{O}(\delta x^{2}) \end{cases}$ (Compact)

 $V_{\mu\nu} \equiv V_{\mu}V_{\nu,+\hat{\mu}}^{*}V_{\mu,+\hat{\nu}}^{*}V_{\nu}^{*} \simeq e^{-idx_{\mu}dx_{\nu}[F_{\mu\nu}+\mathcal{O}(\delta x)]}$ (Plaquette)

$$\left[\sum_{n \ \frac{1}{4}} F_{\mu\nu}^2 \cong -\frac{1}{2} \sum_{n \ \frac{\mathcal{R}e\{V_{\mu\nu}\}}{dx_{\mu}^2 dx_{\nu}^2}} = -\frac{1}{4} \sum_{n \ \frac{(V_{\mu\nu} + V_{\mu\nu}^*)}{dx_{\mu}^2 dx_{\nu}^2}} + \mathcal{O}(\delta x^2) \right]$$

$$\left[\sum_{n \ \frac{1}{4}} F_{\mu\nu}^2 \simeq \sum_{n \ \frac{1}{4}} \frac{\mathcal{I}m^2\{V_{\mu\nu}\}}{dx_{\mu}^2 dx_{\nu}^2} = -\sum_{n \ \frac{1}{4}} \frac{(V_{\mu\nu} - V_{\mu\nu}^*)^2}{dx_{\mu}^2 dx_{\nu}^2} + \mathcal{O}(\delta x^2) \right]$$

$$\left(\text{Compact} \right)$$

LATTICE FORMULATION of $\phi F \tilde{F}$

$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$

LATTICE FORMULATION of $\phi F \tilde{F}$

'Latticesizing'

 $\alpha \equiv \frac{\phi}{\Lambda}$; $S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$

(I)
$$S_{ac}^{L(1)} \propto \sum_{\vec{n}, n_o} \alpha \sum_i E_i B_i = \sum_{\vec{n}, n_o} \alpha \sum_i (\Delta_o^+ A_i - \Delta_i^+ A_o) \epsilon_{ijk} \Delta_j^+ A_k$$

 $\begin{bmatrix} F_{\mu\nu} \equiv (\Delta_{\mu}^+ A_{\nu} - \Delta_{\nu}^+ A_{\nu}) \end{bmatrix}$

LATTICE FORMULATION of $\phi F \tilde{F}$

'Latticesizing'

 $\alpha \equiv \frac{\phi}{\Lambda}$; $S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$

(I)
$$S_{ac}^{L(1)} \propto \sum_{\vec{n}, n_o} \alpha \sum_i E_i B_i = \sum_{\vec{n}, n_o} \alpha \sum_i (\Delta_o^+ A_i - \Delta_i^+ A_o) \epsilon_{ijk} \Delta_j^+ A_k$$

 $\begin{bmatrix} F_{\mu\nu} \equiv (\Delta_\mu^+ A_\nu - \Delta_\nu^+ A_\nu) \end{bmatrix}$

EOM:
$$\begin{cases} [\Delta_o^- B_i - (\nabla^- \times \vec{E})_i] \neq 0 & \text{(Violation of} \\ \sum \Delta_i^- B_i \neq 0 & \text{Bianchi Identities} \end{cases}$$

LATTICE FORMULATION of ϕFF $V^*_{\mu,+\hat{\nu}}$ $\mathbf{n} + \hat{\mu} + \hat{\nu}$ $\mathbf{n} + \hat{\nu}$ **Latticesizing'** V_{ν}^{*} \mathbf{x} $V_{\nu,+\hat{\mu}}^{*}$ $\alpha \equiv \frac{\phi}{\Lambda}$; $S_{ac} \equiv \frac{1}{4\pi^{2}} \int d^{4}x \, \alpha \, \vec{E} \, \vec{B}$ V_{ν}^{*} (I) $S_{ac}^{L(1)} \propto \sum_{\vec{n}, n_o} \alpha \sum_i E_i B_i = \sum_{\vec{n}, n_o} \alpha \sum_i (\underbrace{\Delta_o^+ A_i - \Delta_i^+ A_o}_{i}) \underbrace{\epsilon_{ijk} \Delta_j^+ A_k}_{i}$ × @ @ semiinteger times integer times

EOM: $\begin{cases} \left[\Delta_o^- B_i - (\nabla^- \times \vec{E})_i\right] \neq 0 & \text{(Violation of} \\ \sum \Delta_i^- B_i \neq 0 & \text{Bianchi Identities} \end{cases} \end{cases}$

 $\mathbf{n} + 2\hat{\mu} + \hat{\nu}$

 $\mathbf{n} + 2\hat{\mu}$

 $\mathbf{n} + \hat{\mu} + \hat{\nu}$

 $\mathbf{n} + \hat{\mathbf{v}}$

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$

$$(II) \quad F_{\mu\nu} \equiv (\Delta_{\mu}^{+}A_{\nu} - \Delta_{\nu}^{+}A_{\nu})$$

$$E_{i}^{(2)} \equiv \frac{1}{2}(E_{i} + E_{i,-i})(l)\big|_{l\equiv n+\frac{\hat{0}}{2}}$$

$$E_{i}^{(4)} \equiv \frac{1}{4}(E_{i} + E_{i,-i} + E_{i,-0} + E_{i,-i-0})(l)\big|_{l\equiv n}$$

$$B_{i}^{(4)} \equiv \frac{1}{4}(B_{i} + B_{i,-j} + B_{i,-k} + B_{i,-j-k})(l)\big|_{l\equiv n}$$

$$E_{i}^{(8)} \equiv \frac{1}{2}\left(E_{i}^{(4)} + E_{i,+i}^{(4)}\right), \quad B_{i}^{(8)} \equiv \frac{1}{2}\left(B_{i}^{(4)} + B_{i,+i}^{(4)}\right)$$

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$

$$(II) \quad F_{\mu\nu} \equiv (\Delta_{\mu}^{+}A_{\nu} - \Delta_{\nu}^{+}A_{\nu})$$

$$E_{i}^{(2)} \equiv \frac{1}{2}(E_{i} + E_{i,-i})(l)\big|_{l\equiv n+\frac{\hat{0}}{2}}$$

$$E_{i}^{(4)} \equiv \frac{1}{4}(E_{i} + E_{i,-i} + E_{i,-0} + E_{i,-i-0})(l)\big|_{l\equiv n}$$

$$B_{i}^{(4)} \equiv \frac{1}{4}(B_{i} + B_{i,-j} + B_{i,-k} + B_{i,-j-k})(l)\big|_{l\equiv n}$$

$$E_{i}^{(8)} \equiv \frac{1}{2}\left(E_{i}^{(4)} + E_{i,+i}^{(4)}\right), \qquad B_{i}^{(8)} \equiv \frac{1}{2}\left(B_{i}^{(4)} + B_{i,+i}^{(4)}\right)$$

$$\begin{aligned} & \mathcal{L}atticesizing' \\ \alpha \equiv \frac{\phi}{\Lambda} ; \ S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B} \\ & (II) \ F_{\mu\nu} \equiv (\Delta_{\mu}^+ A_{\nu} - \Delta_{\nu}^+ A_{\nu}) \\ & E_i^{(2)} \equiv \frac{1}{2} (E_i + E_{i,-i})(l) \big|_{l=n+\frac{\hat{0}}{2}} \\ & E_i^{(4)} \equiv \frac{1}{4} (E_i + E_{i,-i} + E_{i,-0} + E_{i,-i-0})(l) \big|_{l=n} \\ & B_i^{(4)} \equiv \frac{1}{4} (B_i + B_{i,-j} + B_{i,-k} + B_{i,-j-k})(l) \big|_{l=n} \\ & E_i^{(8)} \equiv \frac{1}{2} \left(E_i^{(4)} + E_{i,+i}^{(4)} \right), \qquad B_i^{(8)} \equiv \frac{1}{2} \left(B_i^{(4)} + B_{i,+i}^{(4)} \right) \end{aligned}$$

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$

(II) $S_{ac}^{L(2)} \propto \sum_{\vec{n}, n_o} \alpha \sum_i E_i^{(4)} B_i^{(4)}$

$$\mathsf{EOM:} \begin{cases} \left[\sum_{j,k} \epsilon_{ijk} (\Delta_j^+ + \Delta_j^-) E_k^{(8)} - (\Delta_o^+ + \Delta_o^-) B_i^{(8)} \right] = 0 & \checkmark \\ \text{resembles} & (\epsilon_{ijk} \partial_j E_k - \partial_o B_i) = 0 \end{cases}$$

$$\alpha \equiv \frac{\phi}{\Lambda}$$
; $S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$

(II)
$$S_{ac}^{L(2)} \propto \sum_{\vec{n},n_o} \alpha \sum_i E_i^{(4)} B_i^{(4)}$$

$$\mathsf{EOM:} \left\{ \begin{array}{l} \sum_{i} \Delta_{i}^{-} (B_{i}^{(4)} + B_{i,+i}^{(4)}) = 0 \\ \text{resembles } \partial_{i} B_{i} = 0 \end{array} \right.$$

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$

(II) $S_{ac}^{L(2)} \propto \sum_{\vec{n}, n_o} \alpha \sum_i E_i^{(4)} B_i^{(4)}$

EOM: { lterative scheme (One cannot advance one variable) is Inconsistent ! (One cannot advance one variable)

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$

(II) $S_{ac}^{L(2)} \propto \sum_{\vec{n}, n_o} \alpha \sum_{i} E_i^{(4)} B_i^{(4)}$
 $E_i^{(4)} \equiv \frac{1}{2} (E_i^{(2)} + E_{i, -0}^{(2)})$

EOM: { lterative scheme (One cannot advance one variable) is Inconsistent ! (as a function of previous ones)

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$
(III) $S_{ac}^{L(3)} \propto \sum_{\vec{n}, n_o} \alpha \sum_i E_i^{(2)} B_i^{(4)}$

It won't work !

$$\alpha \equiv \frac{\phi}{\Lambda} ; S_{ac} \equiv \frac{1}{4\pi^2} \int d^4 x \, \alpha \, \vec{E} \, \vec{B}$$

(IV)
$$S_{ac}^{L(4)} \propto \sum_{\vec{n}, n_o} \alpha \sum_{i} E_i^{(2)} (B_i^{(4)} + B_{i+0}^{(4)})$$

$$\begin{split} S_{L} &= \Delta t \Delta x^{3} \sum_{t,\vec{n}} \left\{ \begin{array}{l} \frac{1}{2} a^{3} \left(\Delta_{0}^{-} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}} \left(\Delta_{i}^{+} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}}^{3} m^{2} \phi_{+\frac{\hat{0}}{2}}^{2} \\ &+ \frac{1}{2} a_{+\frac{\hat{0}}{2}} \sum_{i} \left(\Delta_{0}^{+} A_{i} - \Delta_{i}^{+} A_{0} \right)^{2} - \frac{1}{4a} \sum_{i,j} \left(\Delta_{i}^{+} A_{j} - \Delta_{j}^{+} A_{i} \right) \\ &+ \frac{\phi}{\Lambda} \sum_{i} \frac{1}{2} E_{i}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \right\}, \quad \text{Lattice action} \end{split}$$

$$\begin{split} S_{L} &= \Delta t \Delta x^{3} \sum_{t,\vec{n}} \left\{ \begin{array}{c} \frac{1}{2} a^{3} \left(\Delta_{0}^{-} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}} \left(\Delta_{i}^{+} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}}^{3} m^{2} \phi_{+\frac{\hat{0}}{2}}^{2} \\ &+ \frac{1}{2} a_{+\frac{\hat{0}}{2}} \sum_{i} \left(\Delta_{0}^{+} A_{i} - \Delta_{i}^{+} A_{0} \right)^{2} - \frac{1}{4a} \sum_{i,j} \left(\Delta_{i}^{+} A_{j} - \Delta_{j}^{+} A_{i} \right) \\ &+ \frac{\phi}{\Lambda} \sum_{i} \frac{1}{2} E_{i}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \right\}, \quad \text{Lattice action} \end{split}$$

1. Lattice Gauge Inv: $A_{\mu} \rightarrow A_{\mu} + \Delta_{\mu}^{+} \alpha$ 2. Cont. Limit to $\mathcal{O}(dx^{2})$

$$\begin{split} S_{L} &= \Delta t \Delta x^{3} \sum_{t,\vec{n}} \left\{ \begin{array}{c} \frac{1}{2} a^{3} \left(\Delta_{0}^{-} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}} \left(\Delta_{i}^{+} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}}^{3} m^{2} \phi_{+\frac{\hat{0}}{2}}^{2} \\ &+ \frac{1}{2} a_{+\frac{\hat{0}}{2}} \sum_{i} \left(\Delta_{0}^{+} A_{i} - \Delta_{i}^{+} A_{0} \right)^{2} - \frac{1}{4a} \sum_{i,j} \left(\Delta_{i}^{+} A_{j} - \Delta_{j}^{+} A_{i} \right) \\ &+ \frac{\phi}{\Lambda} \sum_{i} \frac{1}{2} E_{i}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \right\}, \quad \text{Lattice action} \end{split}$$

1. Lattice Gauge Inv: $A_{\mu} \rightarrow A_{\mu} + \Delta_{\mu}^{+} \alpha$ 2. Cont. Limit to $\mathcal{O}(dx^{2})$ 3. Lattice Bianchi Identities: $\begin{cases} \sum_{i} \Delta_{i}^{-} (B_{i}^{(4)} + B_{i,+i}^{(4)}) = 0\\ (\Delta_{0}^{+} + \Delta_{0}^{-})(B_{i}^{(4)} + B_{i,+i}^{(4)}) = \\ = \sum_{j,k} \epsilon_{ijk} (\Delta_{j}^{+} + \Delta_{j}^{-})(E_{k}^{(4)} + E_{k,+k}^{(4)}) \end{cases}$

$$\begin{split} S_{L} &= \Delta t \Delta x^{3} \sum_{t,\vec{n}} \left\{ \begin{array}{l} \frac{1}{2} a^{3} \left(\Delta_{0}^{-} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}} \left(\Delta_{i}^{+} \phi_{+\frac{\hat{0}}{2}} \right)^{2} - \frac{1}{2} a_{+\frac{\hat{0}}{2}}^{3} m^{2} \phi_{+\frac{\hat{0}}{2}}^{2} \\ &+ \frac{1}{2} a_{+\frac{\hat{0}}{2}} \sum_{i} \left(\Delta_{0}^{+} A_{i} - \Delta_{i}^{+} A_{0} \right)^{2} - \frac{1}{4a} \sum_{i,j} \left(\Delta_{i}^{+} A_{j} - \Delta_{j}^{+} A_{i} \right) \\ &+ \frac{\phi}{\Lambda} \sum_{i} \frac{1}{2} E_{i}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \right\}, \quad \text{Lattice action} \end{split}$$

1. Lattice Gauge Inv: $A_{\mu} \rightarrow A_{\mu} + \Delta_{\mu}^{+} \alpha$ 2. Cont. Limit to $\mathcal{O}(dx^{2})$ 3. Lattice Bianchi Identities: $\begin{cases} \sum_{i} \Delta_{i}^{-} (B_{i}^{(4)} + B_{i,+i}^{(4)}) = 0\\ (\Delta_{0}^{+} + \Delta_{0}^{-})(B_{i}^{(4)} + B_{i,+i}^{(4)}) = \\ = \sum_{j,k} \epsilon_{ijk} (\Delta_{j}^{+} + \Delta_{j}^{-})(E_{k}^{(4)} + E_{k,+k}^{(4)}) \end{cases}$ 4. Topological Term: $(F_{\mu\nu}\tilde{F}^{\mu\nu})_{L} \equiv \sum_{i} \frac{1}{2}E_{i}^{(2)} \left(B_{i}^{(4)} + B_{i,+0}^{(4)}\right) = \Delta_{\mu}^{+}K^{\mu}$ $[F_{\mu\nu}\tilde{F}^{\mu\nu} = \partial_{\mu}K^{\mu}]$ Exact Shift Sym. on the lattice !

E FORMULATION of ϕFF $\Delta_{0}^{+}\left(a^{3}\pi_{\phi}\right) = a_{+\frac{\hat{0}}{2}}\sum_{i}\Delta_{i}^{-}\Delta_{i}^{+}\phi_{+\frac{\hat{0}}{2}} - a_{+\frac{\hat{0}}{2}}^{3}m^{2}\phi_{+\frac{\hat{0}}{2}} + \frac{1}{\Lambda}\sum_{i}\frac{1}{2}E_{i,+\frac{\hat{0}}{2}}^{(2)}\left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)}\right)$ $\Delta_0^{-} \left(a_{+\frac{\hat{0}}{2}} E_{i,+\frac{\hat{0}}{2}} \right) = -\frac{1}{a} \sum_{i,k} \epsilon_{ijk} \Delta_j^{-} B_k - \frac{1}{2\Lambda} \left(\pi_{\phi} B_i^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right)$ $+\frac{1}{8\Lambda}(2+dx\Delta_{i}^{+})\sum_{\pm}\sum_{j,k}\left\{\epsilon_{ijk}[(\Delta_{j}^{\pm}\phi)E_{k,\pm j}^{(2)}]_{+\frac{\hat{0}}{2}}+[(\Delta_{j}^{\pm}\phi)E_{k,\pm j}^{(2)}]_{-\frac{\hat{0}}{2}}\right\}$ $a_{+\frac{\hat{0}}{2}}\sum_{i}\Delta_{i}^{-}E_{i,+\frac{\hat{0}}{2}} = -\frac{1}{4\Lambda}\sum_{\perp}\sum_{i}\left(\Delta_{i}^{\pm}\phi_{+\frac{\hat{0}}{2}}\right)\left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)}\right)_{\pm i}, \text{ (Gauss Law)}$

$$\begin{split} & \text{LATTICE FORMULATION of } \phi F \tilde{F} \\ & \Delta_{0}^{+} \left(a^{3} \pi_{\phi} \right) = a_{+\frac{\hat{0}}{2}} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi_{+\frac{\hat{0}}{2}} - a_{+\frac{\hat{0}}{2}}^{3} m^{2} \phi_{+\frac{\hat{0}}{2}} + \frac{1}{\Lambda} \sum_{i} \frac{1}{2} E_{i,+\frac{\hat{0}}{2}}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \\ & \Delta_{0}^{-} \left(a_{+\frac{\hat{0}}{2}} E_{i,+\frac{\hat{0}}{2}} \right) = -\frac{1}{a} \sum_{j,k} \epsilon_{ijk} \Delta_{j}^{-} B_{k} - \frac{1}{2\Lambda} \left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right) \\ & \quad + \frac{1}{8\Lambda} (2 + dx \Delta_{i}^{+}) \sum_{\pm} \sum_{j,k} \left\{ \epsilon_{ijk} [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{+\frac{\hat{0}}{2}} + [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{-\frac{\hat{0}}{2}} \right\} \\ & a_{+\frac{\hat{0}}{2}} \sum_{i} \Delta_{i}^{-} E_{i,+\frac{\hat{0}}{2}} = -\frac{1}{4\Lambda} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi_{+\frac{\hat{0}}{2}} \right) \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right)_{\pm i} , \text{ (Gauss Law)} \end{split}$$

$$\begin{split} & \text{LATTICE FORMULATION of } \phi F \tilde{F} \\ & \Delta_{0}^{+} \left(a^{3} \pi_{\phi} \right) = a_{+\frac{0}{2}} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi_{+\frac{0}{2}} - a_{+\frac{0}{2}}^{3} m^{2} \phi_{+\frac{0}{2}} + \frac{1}{\Lambda} \sum_{i} \frac{1}{2} E_{i,+\frac{0}{2}}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \\ & \Delta_{0}^{-} \left(a_{+\frac{0}{2}} E_{i,+\frac{0}{2}} \right) = -\frac{1}{a} \sum_{j,k} \epsilon_{ijk} \Delta_{j}^{-} B_{k} - \frac{1}{2\Lambda} \left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right) \\ & \quad + \frac{1}{8\Lambda} (2 + dx \Delta_{i}^{+}) \sum_{\pm} \sum_{j,k} \left\{ \epsilon_{ijk} [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{+\frac{0}{2}} + [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{-\frac{0}{2}} \right\} \\ & a_{+\frac{0}{2}} \sum_{i} \Delta_{i}^{-} E_{i,+\frac{0}{2}} = -\frac{1}{4\Lambda} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi_{+\frac{0}{2}} \right) \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right)_{\pm i} , \quad \text{(Gauss Law)} \end{split}$$

$$\begin{split} & \text{LATTICE FORMULATION of } \phi F \tilde{F} \\ & \Delta_{0}^{+} \left(a^{3} \pi_{\phi} \right) = a_{+\frac{\hat{0}}{2}} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi_{+\frac{\hat{0}}{2}} - a_{+\frac{\hat{0}}{2}}^{3} m^{2} \phi_{+\frac{\hat{0}}{2}} + \frac{1}{\Lambda} \sum_{i} \frac{1}{2} E_{i,+\frac{\hat{0}}{2}}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \\ & \Delta_{0}^{-} \left(a_{+\frac{\hat{0}}{2}} E_{i,+\frac{\hat{0}}{2}} \right) = -\frac{1}{a} \sum_{j,k} \epsilon_{ijk} \Delta_{j}^{-} B_{k} - \frac{1}{2\Lambda} \underbrace{\left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right)} \\ & \quad + \frac{1}{8\Lambda} (2 + dx \Delta_{i}^{+}) \sum_{\pm} \sum_{j,k} \left\{ \epsilon_{ijk} [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{+\frac{\hat{0}}{2}} + [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{-\frac{\hat{0}}{2}} \right\} \\ & a_{+\frac{\hat{0}}{2}} \sum_{i} \Delta_{i}^{-} E_{i,+\frac{\hat{0}}{2}} = -\frac{1}{4\Lambda} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi_{+\frac{\hat{0}}{2}} \right) \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right)_{\pm i} , \text{ (Gauss Law)} \end{split}$$

$$\begin{split} & \text{LATTICE FORMULATION of } \phi F \tilde{F} \\ \Delta_{0}^{+} \left(a^{3} \pi_{\phi} \right) = a_{+\frac{0}{2}} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi_{+\frac{0}{2}} - a_{+\frac{0}{2}}^{3} m^{2} \phi_{+\frac{0}{2}} + \frac{1}{\Lambda} \sum_{i} \frac{1}{2} E_{i,+\frac{0}{2}}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right) \\ \Delta_{0}^{-} \left(a_{+\frac{0}{2}} E_{i,+\frac{0}{2}} \right) = -\frac{1}{a} \sum_{j,k} \epsilon_{ijk} \Delta_{j}^{-} B_{k} - \frac{1}{2\Lambda} \left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right) \\ & \quad + \frac{1}{8\Lambda} (2 + dx \Delta_{i}^{+}) \sum_{\pm} \sum_{j,k} \underbrace{\left\{ \epsilon_{ijk} [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{+\frac{0}{2}} + [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{-\frac{0}{2}} \right\}} \\ a_{+\frac{0}{2}} \sum_{i} \Delta_{i}^{-} E_{i,+\frac{0}{2}} = -\frac{1}{4\Lambda} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi_{+\frac{0}{2}} \right) \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right)_{\pm i} , \text{ (Gauss Law)} \end{split}$$

LATTICE FORMULATION of ϕFF **Continuum**

$$\begin{split} \dot{\pi}_{\phi} &= -3H\pi_{\phi} + \frac{1}{a^2}\vec{\nabla}^2\phi - m^2\phi + \frac{1}{a^3\Lambda}\vec{E}\cdot\vec{B}, \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{1}{a\Lambda}\pi_{\phi}\vec{B} + \frac{1}{a\Lambda}\vec{\nabla}\phi\times\vec{E} \\ \vec{\nabla}\cdot\vec{E} &= -\frac{1}{a\Lambda}\vec{\nabla}\phi\cdot\vec{B} \quad \text{(Gauss Constraint)} \end{split}$$

LATTICE FORMULATION of $\phi F F$ **Continuum**

$$\begin{split} \dot{\pi}_{\phi} &= -3H\pi_{\phi} + \frac{1}{a^2}\vec{\nabla}^2\phi - m^2\phi + \frac{1}{a^3\Lambda}\vec{E}\cdot\vec{B}, \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{1}{a\Lambda}\pi_{\phi}\vec{B} + \frac{1}{a\Lambda}\vec{\nabla}\phi\times\vec{E} \\ \vec{\nabla}\cdot\vec{E} &= -\frac{1}{a\Lambda}\vec{\nabla}\phi\cdot\vec{B} \quad \text{(Gauss Constraint)} \end{split}$$

$$\begin{aligned} \frac{\ddot{a}}{a} &= \frac{-1}{6m_{\rm pl}^2} (3\overline{p} + \overline{\rho}) , \qquad \rho \equiv \frac{1}{2} \pi_{\phi}^2 + \frac{1}{2a^2} \sum_i (\partial_i \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{2} \left(\sum_i \frac{E_i^2}{a^2} + \sum_i \frac{B_i^2}{a^4} \right) \\ \left(\frac{\dot{a}}{a} \right)^2 &= \frac{1}{3m_{\rm pl}^2} \overline{\rho} , \qquad p \equiv \frac{1}{3a^2} \sum_j T_{jj} = \frac{1}{2} \pi_{\phi}^2 - \frac{1}{6a^2} \sum_i (\partial_i \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{1}{6} \left(\sum_i \frac{E_i^2}{a^2} + \sum_i \frac{B_i^2}{a^4} \right) \\ (\text{Hubble law}) \end{aligned}$$

LATTICE FORMULATION of $\phi F \tilde{F}$ **Lattice Formulation**

$$\begin{split} \textbf{LOW} \\ \Delta_{0}^{+} \left(a^{3} \pi_{\phi} \right) &= a_{\pm \frac{0}{2}} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi_{\pm \frac{0}{2}} - a_{\pm \frac{0}{2}}^{3} m^{2} \phi_{\pm \frac{0}{2}} \\ &\quad + \frac{1}{\Lambda} \sum_{i} \frac{1}{2} E_{i,\pm \frac{0}{2}}^{(2)} \left(B_{i}^{(4)} + B_{i,\pm 0}^{(4)} \right) , \\ \Delta_{0}^{-} \left(a_{\pm \frac{0}{2}} E_{i,\pm \frac{0}{2}} \right) &= -\frac{1}{a} \sum_{j,k} \epsilon_{ijk} \Delta_{j}^{-} B_{k} - \frac{1}{2\Lambda} \left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,\pm i} B_{i,\pm i}^{(4)} \right) \\ &\quad + \frac{1}{8\Lambda} (2 + dx \Delta_{i}^{+}) \sum_{\pm} \sum_{j,k} \left\{ \epsilon_{ijk} [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{\pm \frac{0}{2}} + [(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)}]_{-\frac{0}{2}} \right\} \\ a_{\pm \frac{0}{2}} \sum_{i} \Delta_{i}^{-} E_{i,\pm \frac{0}{2}} &= -\frac{1}{4\Lambda} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi_{\pm \frac{0}{2}} \right) \left(B_{i}^{(4)} + B_{i,\pm 0}^{(4)} \right)_{\pm i} , \quad \text{(Gauss Law)} \end{split}$$

LATTICE FORMULATION of $\phi F \tilde{F}$ **Lattice Formulation**

EOIVI		
		(1+1)
		$\Delta_{0}^{+}\left(a^{3}\pi_{\phi} ight)=a_{+rac{\hat{0}}{2}}\sum_{i}\Delta_{i}^{-}\Delta_{i}^{+}\phi_{+rac{\hat{0}}{2}}-a^{3}_{+rac{\hat{0}}{2}}m^{2}\phi_{+rac{\hat{0}}{2}}$
		$+rac{1}{\Lambda}\sum_i rac{1}{2}E^{(2)}_{i,+rac{\hat{0}}{2}}\left(B^{(4)}_i+B^{(4)}_{i,+\hat{0}} ight),$
	Δ_0^-	$\left(a_{+rac{\hat{0}}{2}}E_{i,+rac{\hat{0}}{2}} ight) = -rac{1}{a}\sum_{j,k}\epsilon_{ijk}\Delta_{j}^{-}B_{k} - rac{1}{2\Lambda}\left(\pi_{\phi}B_{i}^{(4)} + \pi_{\phi,+i}B_{i,+i}^{(4)} ight)$
		$+\frac{1}{8\Lambda}(2+dx\Delta_{i}^{+})\sum_{\pm}\sum_{j,k}\left\{\epsilon_{ijk}[(\Delta_{j}^{\pm}\phi)E_{k,\pm j}^{(2)}]_{+\frac{\hat{0}}{2}}+[(\Delta_{j}^{\pm}\phi)E_{k,\pm j}^{(2)}]_{-\frac{\hat{0}}{2}}\right\}$
	$a_{+{\hat 0\over 2}}$	$\sum_{i} \Delta_{i}^{-} E_{i,+\frac{\hat{0}}{2}} = -\frac{1}{4\Lambda} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi_{+\frac{\hat{0}}{2}} \right) \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)} \right)_{\pm i} , \text{(Gauss Law)}$

Expansion	
$\left(\Delta_0^+ a_{-\hat{0}/2}\right)^2 = \frac{a^2}{3m}$	$\frac{1}{2}\rho_L$,
$\Delta_0^- \Delta_0^+ a_{+\hat{0}/2} = -rac{a_0}{6}$	$rac{+\hat{0}/2}{m_{ m pl}^2}(ho_L+3p_L)_{+\hat{0}/2}$

LATTICE FORMULATION of $\phi F F$ **Lattice Formulation**

EoM	$\Delta_{0}^{+}\left(a^{3}\pi_{\phi} ight)=a_{+rac{\hat{0}}{2}}\sum\Delta_{i}^{-}\Delta_{i}^{+}\phi_{+rac{\hat{0}}{2}}-a_{+rac{\hat{0}}{2}}^{3}m^{2}\phi_{+rac{\hat{0}}{2}}$	Expansion
$\Delta_0^ a_{+rac{\hat{0}}{2}}$	$\begin{aligned} & \left(a_{+\frac{\hat{0}}{2}}E_{i,+\frac{\hat{0}}{2}} + \frac{1}{2}\sum_{i} \frac{1}{2}E_{i,+\frac{\hat{0}}{2}}^{(2)} \left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)}\right), \\ & \left(a_{+\frac{\hat{0}}{2}}E_{i,+\frac{\hat{0}}{2}}\right) = -\frac{1}{a}\sum_{j,k}\epsilon_{ijk}\Delta_{j}^{-}B_{k} - \frac{1}{2\Lambda} \left(\pi_{\phi}B_{i}^{(4)} + \pi_{\phi,+i}B_{i,+i}^{(4)}\right) \\ & + \frac{1}{8\Lambda}(2 + dx\Delta_{i}^{+})\sum_{\pm}\sum_{j,k}\left\{\epsilon_{ijk}[(\Delta_{j}^{\pm}\phi)E_{k,\pm j}^{(2)}]_{+\frac{\hat{0}}{2}} + [(\Delta_{j}^{\pm}\phi)E_{k,\pm j}^{(2)}]_{-\frac{\hat{0}}{2}}\right\} \\ & \sum_{i}\Delta_{i}^{-}E_{i,+\frac{\hat{0}}{2}} = -\frac{1}{4\Lambda}\sum_{\pm}\sum_{i}\left(\Delta_{i}^{\pm}\phi_{+\frac{\hat{0}}{2}}\right)\left(B_{i}^{(4)} + B_{i,+\hat{0}}^{(4)}\right)_{\pm i}, \text{(Gauss Law)}\end{aligned}$	$\begin{split} \left(\Delta_0^+ a_{-\hat{0}/2}\right)^2 &= \frac{a^2}{3m_{\rm pl}^2}\rho_L,\\ \Delta_0^- \Delta_0^+ a_{+\hat{0}/2} &= -\frac{a_{+\hat{0}/2}}{6m_{\rm pl}^2}(\rho_L + 3p_L)_{+\hat{0}/2} \end{split}$

$$\begin{split} \bar{H}^{\rm kin} &= \frac{1}{N^3} \sum_{\vec{n}} \frac{\pi_{\phi}^2}{2} \,, \qquad \bar{H}^{\rm grad} = \frac{1}{N^3} \sum_{\vec{n}} \frac{1}{2} \sum_{i} (\Delta_i^+ \phi_{+\frac{\hat{0}}{2}})^2 \,, \quad \bar{H}^{\rm pot} = \frac{1}{N^3} \sum_{\vec{n}} \frac{1}{2} m^2 \phi_{+\frac{\hat{0}}{2}}^2 \\ \bar{H}^E &= \frac{1}{N^3} \sum_{\vec{n}} \sum_{i} \frac{1}{2} E_{i,+\frac{\hat{0}}{2}}^2 \,, \quad \bar{H}^B = \frac{1}{N^3} \sum_{\vec{n}} \sum_{i,j} \frac{1}{4} (\Delta_i^+ A_j - \Delta_j^+ A_i)^2 \,, \end{split}$$

$$\begin{split} \rho_L &= \bar{H}^{\rm kin} + \frac{1}{a^2} \frac{1}{2} (\bar{H}^{\rm grad}_{-\hat{0}/2} + \bar{H}^{\rm grad}_{+\hat{0}/2}) + \frac{1}{2} (\bar{H}^{\rm pot}_{-\hat{0}/2} + \bar{H}^{\rm pot}_{+\hat{0}/2}) + \frac{1}{a^2} \frac{1}{2} (\bar{H}^E_{-\hat{0}/2} + \bar{H}^E_{+\hat{0}/2}) + \frac{1}{a^4} \bar{H}^B \,, \\ (\rho_L + 3p_L)_{+\hat{0}/2} &= 2 (\bar{H}^{\rm kin} + \bar{H}^{\rm kin}_{+\hat{0}}) - 2 \bar{H}^{\rm pot}_{+\hat{0}/2} + \frac{2}{a^2_{+\hat{0}/2}} \bar{H}^E + \frac{1}{a^4_{+\hat{0}/2}} (\bar{H}^B + \bar{H}^B_{+\hat{0}}) \,, \end{split}$$

Part 2

Initial Condition: 1-2 efolds before end Inflation

$$\begin{aligned} A_+(k_i, t_i) &\simeq \frac{e^{-i\omega_i t_i}}{\sqrt{2a(t_i)\omega_i}} \equiv \frac{1}{\sqrt{2k_i}} \left[\cos(\omega_i t_i) - i\sin(\omega_i t_i)\right] \\ \dot{A}_+(k_i, t_i) &\simeq -i\frac{\omega_i}{\sqrt{2k_i}} e^{-i\omega_i t_i} \equiv -\frac{1}{a(t_i)}\sqrt{\frac{k_i}{2}} \left[\sin(\omega_i t_i) + i\cos(\omega_i t_i)\right] \end{aligned}$$

Initial Condition: 1-2 efolds before end Inflation

$$\begin{aligned} A_+(k_i, t_i) &\simeq \frac{e^{-i\omega_i t_i}}{\sqrt{2a(t_i)\omega_i}} \equiv \frac{1}{\sqrt{2k_i}} \left[\cos(\omega_i t_i) - i\sin(\omega_i t_i) \right] \\ \dot{A}_+(k_i, t_i) &\simeq -i\frac{\omega_i}{\sqrt{2k_i}} e^{-i\omega_i t_i} \equiv -\frac{1}{a(t_i)}\sqrt{\frac{k_i}{2}} \left[\sin(\omega_i t_i) + i\cos(\omega_i t_i) \right] \end{aligned}$$

$$\ddot{A}_{\pm}(t,k) + \left(\frac{\dot{a}}{a}\right)\dot{A}_{\pm}(t,k) + \left[\frac{k^2}{a^2} \pm \left(\frac{k\dot{\phi}}{a\Lambda}\right)\right]A_{\pm}(t,k) = 0$$

Initial Condition: 1-2 efolds before end Inflation

Initial Condition: 1-2 efolds before end Inflation

$$\ddot{A}_{\pm}(t,k) + \left(\frac{\dot{a}}{a}\right)\dot{A}_{\pm}(t,k) + \left[\frac{k^2}{a^2} \pm \left(\frac{k\dot{\phi}}{a\Lambda}\right)\right]A_{\pm}(t,k) = 0$$
If dominates:
Deep inside
Hubble radius
(Oscillations
@ inflation)
$$A_{\pm}(t,k) = 0$$
If dominates:
Tachyonic IR
Instability
Both at Inflation
and preheating !

Initial Condition: 1-2 efolds before end Inflation

Initial Condition: 1-2 efolds before end Inflation

Preparation: Much before, Bunch-Davies Vacuum @ sub-Hubble

Random Numbers: Create 3d random realization of $A_{\mu}(\mathbf{k})$

Initial Condition: 1-2 efolds before end Inflation **Preparation:** Much before, Bunch-Davies Vacuum @ sub-Hubble **Random Numbers:** Create 3d random realization of $A_{\mu}(\mathbf{k})$

Initial Condition: 1-2 efolds before end Inflation **Preparation:** Much before, Bunch-Davies Vacuum @ sub-Hubble **Random Numbers:** Create 3d random realization of $A_{\mu}(\mathbf{k})$ **Sub-dominance:** Gauge fields must be completely negligible

Initial Cut-off Problem: Separate IR from UV modes

Initial Cut-off Problem: Separate IR from UV modes

Initial Cut-off Problem: Separate IR from UV modes

Trajectories should overlap: Starting at different times

Trajectories should overlap: Starting at different times

End inflation cut-off: Trajectories overlap, excess energy in the UV

Trajectories should overlap: Starting at different times

Lattice cut-off: Trajectories don't overlap End inflation cut-off: Trajectories overlap, excess energy in the UV Adaptative cut-off: Trajectories overlap, excess UV energy removed !

Overlapping trajectories

Gauge energy negligible

IR-UV finite range (N = 256)

Choice of Couplings: $1/\Lambda \sim 6 m_{\rm pl}^{-1} - 15 m_{\rm pl}^{-1}$

Let's see the dynamics !

Axion-Inflation Preheating Energy Spectra

 ρ_{EM} ρ_{tot} 0.50.1Ratio 0.05**EM-energy** 1.0To total 0.90.01 0.005 0.80.70.001 8 9 1213 6 710 11 14 m_{pl}/Λ $1/\Lambda \gtrsim 9.5 \, m_{
m pl}^{-1}$: Supercritical couplings More than ~50% energy in Gauge fields

 ρ_{EM} ρ_{tot} 0.50.1Ratio 0.05**EM-energy** 1.0To total 0.90.01 0.005 0.80.70.0018 9 1213 6 71011 14 m_{pl}/Λ

We reproduce very similar behaviour to Adshead et al 2015 (1502.06506)

Part 3

- * LATTICE FORMULATION of $\phi F \tilde{F}$
 - Gauge inv,
 - O(dx^2),
 - Bianchi ID,
 - Topological (CS num, Shift Symm.)

- * LATTICE FORMULATION of $\phi F \tilde{F}$
 - Gauge inv,
 - O(dx^2),
 - Bianchi ID,
 - Topological (CS num, Shift Symm.)
- * AXION-INFLATION $V(\phi)$ + $\phi F \tilde{F}$
 - Extremely interesting: GW, BAU, MagGen, ...
 - Preheating in lattice (full Non-Lin): Super efficient **V**
 - Inflation on the lattice ... hard, but doable ...

- * LATTICE FORMULATION of $\phi F \tilde{F}$
 - Gauge inv,
 - O(dx^2),
 - Bianchi ID,
 - Topological (CS num, Shift Symm.)
- * AXION-INFLATION $V(\phi)$ + $\phi F \tilde{F}$
 - Extremely interesting: GW, BAU, MagGen, ...
 - Preheating in lattice (full Non-Lin): Super efficient V
 - Inflation on the lattice ... hard, but doable ...

* RELATED TOPICS

- axion-inflation and GWs (Dimastrogiovanni / Fujita talks)
- GW from preheating (Pieroni's talk)

Part 4

Muchas gracias por vuestra atención !

