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Motivation: Chiral asymmetry

In Standard Model left and right fermions have different properties:
L – doublets, R – singlets.
Many models of New Physics are also sensitive to the chirality.
This may generate at some point the chiral asymmetry – excess of
the fermions with one chirality over another ones.

Question: How fast does this asymmetry disappear?

This can have an impact on different phenomena:
◇ generation of cosmological magnetic fields;

M. Joyce and M. Shaposhnikov, PRL 79, 1193 (1997).
A. Boyarsky, J. Fröhlich and O. Ruchayskiy, PRL 108, 031301 (2012).
D.E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014).

◇ baryon asymmetry of the Universe – ?
◇ Dark Matter production – ?
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Chirality and mass

We consider the electron-positron plasma at temperatures
me ≪ T ≪ TEW and only with EM interactions included.

HQED =

∫︁
d3x

[︁
−i𝜓(𝛾 ·∇)𝜓 + (E 2 + B2)/2 + e𝜓𝛾𝜇𝜓A𝜇⏟  ⏞  

H0

+me𝜓𝜓⏟  ⏞  
Hm

]︁
N5 =

∫︁
d3x 𝜓†𝛾5𝜓, [N5,H0] = 0, [N5,Hm] = −2me

∫︁
d3x𝜓𝛾5𝜓 ̸= 0

Real fermions are massive that is why the chirality is undefined for them.
There are two ways to consider the evolution of initial chiral asymmetry:

To use the methods of nonequilibrium QFT (Schwinger-Keldysh
formalism);
To treat mass me as a perturbation.

In our work, we follow the second approach.
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Definition of the chirality flipping rate

At classical level

𝜕𝜇j
𝜇
5 = 2ime𝜓𝛾

5𝜓

dN5

dt
= 2ime

∫︁
d3x𝜓𝛾5𝜓

In quantum field theory

𝜕𝜇j
𝜇
5 = 2ime𝜓𝛾

5𝜓 − e2

8𝜋2F𝜇𝜈 F̃
𝜇𝜈

d

dt

[︁
N5 +

𝛼

𝜋
ℋ⏟  ⏞  

Q5

]︁
= 2ime

∫︁
d3x𝜓𝛾5𝜓

For me = 0, the total fermion number N and the chiral charge Q5 are
conserved separately.
For me ̸= 0,

d⟨Q5⟩
dt

= −Γflip⟨Q5⟩

Γflip can be found perturbatively in me and 𝛼.
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Relation to axions

It is argued in the literature that the chiral anomaly is associated with
a new pseudoscalar degree of freedom – axion
J. Fröhlich and B. Pedrini, Int. Conf. Math. Phys. (2000)
A. Boyarsky, J. Fröhlich and O. Ruchayskiy, PRD 92, 043004 (2015)

When fermions have been integrated out,

ℒ = −1
4
F𝜇𝜈F

𝜇𝜈 +
1
2
(𝜕𝜇a)(𝜕

𝜇a) + 𝛼2 a

M
F𝜇𝜈 F̃

𝜇𝜈 .

In the spatially homogeneous case,

𝜕0a ∝ (NR − NL) ∝ (𝜇R − 𝜇L)

and EoM for such a system are just the well-known Maxwell equations
(with CME) + anomaly equation.
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Naive estimate for chirality flipping rate
The lowest order processes in QED equilibrating the particles’ momenta are
e−e−, e−e+, and Compton scatterings:

They are accompanied by the subleading processes where the chirality of
the fermion is flipped. The probability of this event is proportional to m2

e :

Γnaive
flip ∼ m2

e

⟨p2⟩Γcoll ∼
m2

e

(3T )2
𝛼2T .

This expression was widely used in the literature as a natural estimate for
the chirality flipping rate in electron-positron plasma.
Our main result: this estimate is not correct.
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Boltzmann kinetic equation

ḟ a(k) = −𝒞a[f ]

Appeared as a classical tool, but can be applied to quantum systems,
if their quasiparticle description is well justified;
if the effects of quantum statistics are taken into account;
if the collision integral 𝒞a[f ] is calculated using the Feynman rules of
the underlying QFT.

For 2 ↔ 2 processes a(k) + b(p) ↔ c(k ′) + d(p′), the collision integral has
the form

𝒞a[f ] =
∑︁
proc.

∫︁
k ′,p,p′

|ℳ|2(2𝜋)4𝛿(4)(k + p − k ′ − p′)×

× [f af b(1 ± f c)(1 ± f d)⏟  ⏞  
“loss”

− (1 ± f a)(1 ± f b)f c f d⏟  ⏞  
“gain”

].
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Compton scattering eL + 𝛾 ↔ 𝛾 + eR

Assumptions:
Spatially homogeneous electron-positron plasma.
Classical EM field is absent.
Characteristic timescale Γ−1

coll ≪ t ≪ Γ−1
flip.

L

R

q

The distribution function of left/right electrons – Fermi-Dirac distribution

fL,R(k) = nF (𝜖k − 𝜇L,R), 𝜇R,L = 𝜇± 𝜇5.

The chemical potentials 𝜇L,R slowly evolve in time because of the chirality
flipping processes (𝜇5 evolves). Then, to the leading order

LHS = ḟR − ḟL = − 2
T
nF (𝜖k)[1 + nF (𝜖k)]𝜇̇5 ∝ 𝜇̇5 ∝ d

dt ⟨Q5⟩,

RHS = −𝒞R [f ] + 𝒞L[f ] ∝ [“loss” − “gain”] ∝ 𝜇5 ∝ ⟨Q5⟩.
Thus, d

dt ⟨Q5⟩ = −Γflip⟨Q5⟩ indeed holds.
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Chirality flipping rate due to Compton scattering

me

e

e

me

e

e

Matrix elements of the Compton scattering and annihilation processes:

|ℳ|2 =
8m2

ee
4𝜖k𝜖p(1 − cos 𝜃kp)

|(q − Σ)2|2 , Σ ∝ e2T 2

q
.

Substituting this to the collision integral, we finally get the expression for
the chirality flipping rate

Γflip =
3𝜋3

2
m2

e𝛼
2T

∫︁
d3q
(2𝜋)3

(1 − cos2 𝜃kq)/q

|(q − Σ)2|2 ∝ m2
e𝛼

2 × 1
q2
IR

.

Numerically,

Γflip ≈ 0.24
𝛼m2

e

T
.
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Lower order processes - ?

Since we treat the electron mass me as a perturbation, the asymptotic
states are massless. This allows for some lower-order processes to occur.

me

e

For massless particles, such collinear processes of bremsstrahlung,
absorption and annihilation become possible.
Thus, the estimate for Γflip would be also to the same order:

Γflip ∝ m2
e

T
𝛼.

However, this contribution is very sensitive to the deformations of the
electron’s dispersion relation (e.g., due to the thermal corrections in
plasma).
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Chirality flipping rate from linear response formalism 1

Linear response formalism: H = H0 + H ′, ⟨A(x,t)⟩0 = 0

⟨A(x,t)⟩ = −i

∫︁ t

−∞

⟨[︁
Ã(x,t),H̃ ′(t ′)

]︁⟩
0
dt ′

Here tilda denotes an operator in Heisenberg representation of H0.
In our case, we have H = H0 + Hm, ⟨Q̇5⟩0 = 0.
Heisenberg equation for Q5 reads

Q̇5 =
1
i
[Q5,Hm] = 2ime

∫︁
d3x𝜓𝛾5𝜓.

Applying linear response formula to our system, we obtain:

⟨Q̇5⟩ = 2m2
e

∫︁
d3xd3y

∫︁ t

−∞
dt ′

⟨︀[︀
𝜓(x,t)𝛾5𝜓(x,t), 𝜓(y,t ′)𝜓(y,t ′)

]︀⟩︀
0
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Chirality flipping rate in the linear response formalism 2

It is convenient to introduce the retarded Green’s function

Gret(𝜔,q) = −i

∫︁
d4x e i𝜔t−iq·x𝜃(t)

⟨︀[︀
Ψ̄L(t,x)ΨR(t,x), Ψ̄R(0,0)ΨL(0,0)

]︀⟩︀
.

Then, the rate of change of the chiral charge per unit volume

1
V

⟨
dQ5

dt

⟩
= −4m2

eℑm [Gret(𝜔 = −2𝜇5,q = 0)] .

The chirality flipping rate can be determined as

Γflip =
12m2

e

T 2

[︂
𝜕

𝜕𝜇5
ℑmGret(−2𝜇5,0)

]︂⃒⃒⃒⃒
𝜇5=0

In practice: Matsubara GM(iΩn,q)
iΩn→𝜔+i0−→ Retarded Gret(𝜔,q)
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Zeroth order in 𝛼

Trivial case: EM interaction is switched off.

R

L

 k The computation is straightforward and it
gives the chirality flipping rate

Γ
(0)
flip =

12𝜋m2
e

T 3

∫︁
d3k
(2𝜋)3

1
cosh2 k

2T

𝛿(2k) = 0.

In fact, this means that the spontaneous flip of chirality is impossible for
the free particle.

me

In this process, incoming and outgoing particles cannot be simultaneously
on shell for any nonzero momentum because of the angular momentum
conservation.
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First order in 𝛼

In the first order in 𝛼 there are contributions from three diagrams:

k

q

Q
0, iΩn

R

L

1
k

q

Q
0, iΩn

R

L

2

k

q

Q
0, iΩn

R

L

3

Divergences:
Infrared divergences from the region Q → 0 (IR photon) –
are canceled out when summing all three diagrams in 1st order.
Collinear divergences in 1 and 2 diagrams, when k → 0.
Are not canceled out and lead to logarithmically divergent result.

Γflip =
3
4
m2

e

T
𝛼

∫︁
dk

k

1
cosh2 k

2T

≈ 3
4
m2

e

T
𝛼 ln

T

𝜀

Here 𝜀 is the IR regularization parameter.
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Self-energy resummation

There are two reasons for this divergence:
× product of 3 propagators with the same momentum;
× self-energy insertion is itself singular Σ ∝ 1/k as k → 0.

Obviously, the divergence would become even more severe if we added
more loops on upper and/or lower line.
That is why the resummation is required.

Γ1,2
flip =

6m2
e

T 3

∫︁
d4k

(2𝜋)4
1

ch2 k0

2T

𝜌+(k
0,k)𝜌−(k0,k)

𝜌± = −2ℑmG±(k
0,k) is the spectral density of particles with

positive/negative ratio of chirality to helicity.
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Electron spectral density in plasma: HTL

𝜌±(k0,k) = 2𝜋
[︀
Z±(k)𝛿(k

0 − 𝜖±(k)) + Z∓(k)𝛿(k
0 + 𝜖∓(k))

]︀
+𝜌

(LD)
± (k0,k)

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

k/mth

k
0
/m

th

ρ+(k0,k)

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

k/mth

k
0
/m

th

ρ-(k0,k)

HTL self-energy resummation brings new features:
Usual branch in spectrum acquires a gap eT/(2

√
2) at k = 0. For

large momenta the dispersion is 𝜖+(k) ≈
√︁
k2 +m2

th, mth = eT/2.
New branch appears with the opposite helicity. However, it exists only
at soft momenta k ∼ eT and is exponentially suppressed for k ∼ T .
The spectral density includes the continuous (“incoherent”)
contribution for k2

0 < k2.
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Electron spectral density in plasma: beyond HTL

𝜌±(k0,k) = 2𝜋
[︀
Z±(k)𝛿𝛾(k

0 − 𝜖±(k)) + Z∓(k)𝛿𝛾(k
0 + 𝜖∓(k))

]︀
+𝜌

(LD)
± (k0,k)

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

k/mth

k
0
/m

th

ρ+(k0,k)

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

k/mth

k
0
/m

th

ρ-(k0,k)

HTL result does not include the effects of collisions.
Finite lifetime of quasiparticles 𝜏−1 = 𝛾 = e2

4𝜋 log e−1T .
Broadening of the poles: 𝛿(𝜖) → 𝛿𝛾(𝜖).
Washing out the bounds of continua.
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Overlapping continua
The first contribution to Γflip comes from the overlap of incoherent
contributions of 𝜌+ and 𝜌−.

Appears from the self-energy resummation of both lines.
Exists already in HTL approximation.
Beyond HTL (washing out the bounds) – higher order corrections.

Γcont
flip ≈ 0.24

𝛼m2
e

T
– exactly what we had in kinetic approach.
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Overlap of the pole with continuum
We have the quasiparticle pole of one chirality overlapping with the
continuum of another chirality. This corresponds to well-known graphs

k

q

Q
0, iΩn

R

L

1
k

q

Q
0, iΩn

R

L

2

But now, the particles have modified dispersion relations and finite lifetime.

k

q

Q
0, iΩn

R

L

3

At this stage, also the 3d graph must be added.
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Collinear 1 ↔ 2 processes in plasma

We have already calculated these diagrams. The result is

Γcoll
flip =

3
4
m2

e

T
𝛼

∫︁
dk

k

1
cosh2 k

2T

≈ 3
4
m2

e

T
𝛼 ln

T

𝜀

Here 𝜀 is the lowest possible energy scale at which the collinear processes
are allowed.

m

Qk

k−Q
m

k

Q k+Q

m
k

Q− k Q

We can violate a bit the energy conservation law in the collision event:
𝜖+(k)± 𝜖+(q)± 𝜔t(Q) . 2𝛾.

𝜖+(k) ≈ k +
m2

th
2k

, 𝜔t(Q) ≈ Q +
m2

𝛾

2Q
, mth,m𝛾 ∼ eT .

𝜀 ≃ m2
th
𝛾

∼ T

ln e−1 ⇒ Γcoll
flip ≈ 3

4
m2

e

T
𝛼 ln ln e−1

O. Sobol @ Zooming in on Axions in the Early Universe June 23, 2020 23



Final result for Γflip

Full leading order result for the chirality flipping rate reads as

Γflip =
m2

e

T
𝛼

[︂
3
4
ln ln𝛼−1 − 0.25 +

1.12
ln𝛼−1 +𝒪(

1
(ln𝛼−1)2

)

]︂
For 𝛼 = 1/137,

Γflip ≈ 1.17𝛼
m2

e

T
≈ 8.5 × 10−3m

2
e

T
.

The naive estimate was

Γnaive
flip ≈ 𝛼2

9
m2

e

T
≈ 5.9 × 10−6m

2
e

T
.
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Summary
Conclusions:

Chirality flipping rate in electron-positron plasma was calculated in the
leading order in mass me and EM coupling constant 𝛼.
Compton scattering and annihilation processes contribute to this rate,
however, the IR divergences in corresponding matrix elements change
the parametric dependence on 𝛼.
In addition, the nearly collinear processes of bremsstrahlung,
absorption, and annihilation become allowed because of the finite
lifetime of the quasiparticles.

The final result is Γflip ≈ 1.17𝛼m2
e

T , which is 3 orders of magnitude
larger than the naive estimates in the literature.

Issues to be addressed in further investigations:
* Other types of interactions also must be included (e.g., weak

reactions, inverse Higgs decay).
* The model in which the chiral asymmetry is created must be added.
* The consequences for magnetogenesis, BAU and DM must be studied.
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Appendix
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Averaging in grand canonical ensemble

⟨Q̇5⟩ = 2m2
e

∫︁
d3xd3y

∫︁ t

−∞
dt ′

⟨︀[︀
𝜓(x,t)𝛾5𝜓(x,t), 𝜓(y,t ′)𝜓(y,t ′)

]︀⟩︀
0

𝒪H(x,t) = e iHt𝒪S(x)e−iHt = e iKte it(𝜇N+𝜇5Q5)𝒪S(x)e−it(𝜇N+𝜇5Q5)⏟  ⏞  
𝒪̃S (x,t)

e−iKt = 𝒪̃K (x,t)

⟨
dQ5

dt

⟩
= 2m2

∫︁
d3xd3y

∫︁ ∞

−∞
dt ′𝜃(t − t ′)×

×
{︁
e−2i𝜇5(t−t′)

⟨︀[︀
W (x ,t),W †(y ,t ′)

]︀⟩︀
− e2i𝜇5(t−t′)

⟨︀[︀
W †(x ,t),W (y ,t ′)

]︀⟩︀}︁
.

Gret(x−y ; t−t ′) = −i𝜃(t−t ′)
⟨︀[︀
W (x ,t),W †(y ,t ′)

]︀⟩︀
, W (x ,t) = ΨL(x ,t)ΨR(x ,t).

1
V

⟨
dQ5

dt

⟩
= −4m2ℑm [Gret(q = 0;𝜔 = −2𝜇5)]
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Need for resummation

Let us consider the general case with arbitrary number of self-energy
insertions in the loop

n

m

We have
n +m + 2 propagators with the same momentum k ;
n +m self-energy insertions behaving Σ ∝ 1/k as k → 0;
one integration d4k .

ℑmG n,m
ret ∝

∫︁
d4k

(1/k)n+m

k(n+m+2) ∝
∫︁

dk

k2n+2m−1 ∼ 𝜀2(1−n−m).

Higher orders lead to more severe divergences – resummation is needed.
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Quasiparticles in plasma

M. Le Bellac, “Thermal Field Theory”, (Cambridge University Press, 1996).

ϵ+(k)

ϵ-(k)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k/mth

ϵ
/m

th

𝜖±(k ≪ mth) ≈
mth√

2
± k

3
,

𝜖+(k ≫ mth) ≈
√︁
k2 +m2

th ≈ k +
m2

th
2k

,

𝜖−(k ≫ mth) ≈ k

[︃
1 + 2e

− 4k2

m2
th

−1
]︃
.

Incoherent contribution to the spectral density (HTL):

𝜌LD± (k0,k) =

𝜋m2
th

2k

(︁
1 ∓ k0

k

)︁
𝜃(k2 − k2

0 )[︁
(k0 ∓ k)

(︁
1 ± m2

th
4k2 ln

⃒⃒⃒
k+k0

k−k0

⃒⃒⃒)︁
∓ m2

th
2k

]︁2
+
[︁
𝜋m2

th
4k

(︁
1 ∓ k0

k

)︁]︁2 .
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Contribution of collinear processes

Overlap of the quasiparticle pole with the incoherent part:

Γ
(pole)
flip =

6m2
e

𝜋2T 3

∫︁ ∞

0

k2dk

ch2 k
2T

∫︁ ∞

−∞
dx 𝛿𝛾e (x)𝜌−(𝜖+(k) + x ,k),

where the spectral density far from the shell reads as

𝜌−(𝜖+(k) + x ,k) ≈ − 1
2k2ℑmΣ−(𝜖+(k) + x + i0,k).

Finally, we get

Γ
(pole, collinear)
flip =

3m2
e𝛼

T 3

∫︁ ∞

0

dk

ch2 k
2T

∫︁
d3Q
(2𝜋)3

∑︁
𝜆′,𝜆′′=±

𝜆′′

Q

(︂
cth

𝜆′′Q

2T
+ th

k − 𝜆′′Q

2T

)︂
×

× 𝛿2𝛾
(︀
𝜖+(k)− 𝜆′𝜖+(k − Q)− 𝜆′′𝜔t(Q)

)︀⏟  ⏞  
approximate energy conservation

(︂
1 + 𝜆′ k · (k − Q)

k|k − Q|

)︂
.
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Comparison to other results

Total, broken

Total, symm.

Hubble rate

EM, eq.(66)

e
+
e
-→h, eq.(3)

EW, naive, eq.(1)

EM, naive, eq.(4)
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