Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

A Unified Model of Dark Energy, Dark Matter, and Baryogenesis

Robert Brandenberger Physics Department, McGill University, Canada

CERN Colloquium, June 24 2020 Work in collaboration with J. Fröhlich arXiv:2004.10025

Outline

Unified DM/DE R. Brandenberger

1 Ir

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

Introduction

2 Standard Paradigm in Trouble

- Dark Energy cannot be Λ
- Challenges for the WIMP Paradigm
- 3 Unified Model of DE, DM and Baryogenesis

Discussion and Conclusions

Plan

Unified DM/DE

R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Introduction

Standard Paradigm in Trouble

- Dark Energy cannot be Λ
 - Challenges for the WIMP Paradigm

Unified Model of DE, DM and Baryogenesis

4 Baryogenesis

5 Discussion and Conclusions

Evidence for Dark Matter: Galaxy Velocity Rotation Curves

Evidence for Dark Matter: Bullet Cluster

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Credit: NASA/WMAP Science Team

Unified DM/DE

R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

- Without DM: matter fluctuations on galaxy scales couple to radiation for t_{eq} < t < t_{rec} → decay as a(t)^{-1/2}.
- If DM dominates over baryonic matter: matter fluctuations grow ∝ *a*(*t*) for *t_{eq}* < *t* < *t_{rec}*.
 - Fix the matter power spectrum by observations.
- \rightarrow without DM the matter fluctuations at t_{eq} were larger than in the case of dominant DM by a factor of $(a(t_{rec})/a(t_{eq}))^{3/2}$
- \rightarrow amplitude of the angular power spectrum of CMB anisotropies predicted to be $\sim 10^{-3}$ (R. Sachs and A. Wolfe, Ap. J. 147, 73 (1967)).

Unified DM/DE

R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

- Without DM: matter fluctuations on galaxy scales couple to radiation for t_{eq} < t < t_{rec} → decay as a(t)^{-1/2}.
- If DM dominates over baryonic matter: matter fluctuations grow ∝ *a*(*t*) for *t_{eq}* < *t* < *t_{rec}*.
- Fix the matter power spectrum by observations.
- \rightarrow without DM the matter fluctuations at t_{eq} were larger than in the case of dominant DM by a factor of $(a(t_{rec})/a(t_{eq}))^{3/2}$
 - \rightarrow amplitude of the angular power spectrum of CMB anisotropies predicted to be $\sim 10^{-3}$ (R. Sachs and A. Wolfe, Ap. J. 147, 73 (1967)).

Unified DM/DE

R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

- Without DM: matter fluctuations on galaxy scales couple to radiation for t_{eq} < t < t_{rec} → decay as a(t)^{-1/2}.
- If DM dominates over baryonic matter: matter fluctuations grow ∝ *a*(*t*) for *t_{eq}* < *t* < *t_{rec}*.
- Fix the matter power spectrum by observations.
- \rightarrow without DM the matter fluctuations at t_{eq} were larger than in the case of dominant DM by a factor of $(a(t_{rec})/a(t_{eq}))^{3/2}$
 - \rightarrow amplitude of the angular power spectrum of CMB anisotropies predicted to be $\sim 10^{-3}$ (R. Sachs and A. Wolfe, Ap. J. 147, 73 (1967)).

Evidence for Dark Energy: Cosmological Probes

8/54

Evidence for Dark Energy: Supernovae

Evidence for Baryogenesis: Cosmic Rays

A. Cohen, A. De Rujula and S. Glashow., Ap. J. 495, 539 (1998)

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dai Sector

Baryogenesis

- Assume a patchwork of matter and antimatter regions.
- → after recombination annihilations at the regional boundaries.
- \rightarrow cosmic diffuse γ -ray background.
- Excludes B = 0 universe with domains smaller than Hubble volume.

Evidence for Baryogenesis: Nucleosynthesis

Standard Paradigm

Unified DM/DE R. Branden-

R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

- Dark Energy is the Cosmological Constant Λ.
- Dark Matter is a WIMP (weakly interacting massive particle).

Standard Paradigm for Dark Energy: LCDM

Unified DM/DE R. Brandenberger

Introduction

- Standard Paradigm DE is not A No WIMP
- Unified Dar Sector
- Baryogenesis
- Conclusions

• Dark Energy is a cosmological constant.

- No new parameters Λ must arise in the low energy EFT of gravity.
- No conflict with data.
- Cosmological constant problem: why is Λ no small?
 - Coincidence problem: why is $\rho_{\Lambda} \sim \rho_m$ today?

Standard Paradigm for Dark Energy: LCDM

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

- Dark Energy is a cosmological constant.
- No new parameters Λ must arise in the low energy EFT of gravity.
- No conflict with data.
- Cosmological constant problem: why is A no small?
- Coincidence problem: why is $ho_{\Lambda} \sim
 ho_{m}$ today?

Standard Paradigm for Dark Energy: LCDM

Unified DM/DE R. Brandenberger

Introduction

- Standard Paradigm DE is not A No WIMP
- Unified Dar Sector
- Baryogenesis
- Conclusions

- Dark Energy is a cosmological constant.
- No new parameters Λ must arise in the low energy EFT of gravity.
- No conflict with data.
- Cosmological constant problem: why is A no small?
- Coincidence problem: why is $\rho_{\Lambda} \sim \rho_m$ today?

Plan

2

Unified DM/DE

R. Brandenberger

Introduction

Standard Paradigm

DE is not Λ No WIMP

- Unified Dar Sector
- Baryogenesis
- Conclusions

Introductior

- Standard Paradigm in TroubleDark Energy cannot be Λ
- Challenges for the WIMP Paradigm

Unified Model of DE, DM and Baryogenesis

- 4 Baryogenesis
- 5 Discussion and Conclusions

Trans-Planckian Problem

J. Martin and R.B., *Phys. Rev. D63, 123501 (2002)*

- Conclusions
- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
- **Problem:** If time period of inflation is more than $70H^{-1}$, then $\lambda_p(t) < I_{pl}$ at the beginning of inflation.
- \rightarrow new physics MUST enter into the calculation of the fluctuations.

Trans-Planckian Censorship Conjecture (TCC)

A. Bedroya and C. Vafa., arXiv:1909.11063

Unified DM/DE R. Brandenberger Introduction Standard Paradigm DE listed A

No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

No trans-Planckian modes ever exit the Hubble horizon.

 $ds^2 = dt^2 - a(t)^2 d\mathbf{x}^2$

 $H(t)\equiv \frac{\dot{a}}{a}(t)$

 $rac{a(t_R)}{a(t_i)} I_{pl} \, < \, H(t_R)^{-1}$

コロト (日) (言) (言) (言) しんぐ

Trans-Planckian Censorship Conjecture (TCC)

A. Bedroya and C. Vafa., arXiv:1909.11063

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dai Sector

Baryogenesis

Conclusions

No trans-Planckian modes ever exit the Hubble horizon.

$$ds^2 = dt^2 - a(t)^2 d\mathbf{x}^2$$

$$H(t) \equiv rac{\dot{a}}{a}(t)$$
 $rac{a(t_R)}{a(t_i)} l_{pl} < H(t_R)^{-1}$

(ロ) (聞) (言) (言) (言) (の)

16/54

Implications for Dark Energy

Implications for Dark Energy

Sub-Extremal Black Hole

Super-Extremal Black Hole

Unified DM/DE	
R. Branden- berger	
Standard Paradigm DE is not A No WIMP	
	to aberra
	T Obdever
	/ > r
	singularity Black hole Q>M

Penrose's Cosmic Censorship Hypothesis

R. Penrose, *Riv. Nuovo Cim. 1, 252 (1969)*

Unified DM/DF R. Brandenberger Time-like singularities are hidden by horizons. Singularity hidden from external observer. DE is not A Non-unitarity and acausality hidden from external observer.

Penrose's Cosmic Censorship Hypothesis

R. Penrose, *Riv. Nuovo Cim. 1, 252 (1969)*

Unified DM/DF R. Brandenberger Time-like singularities are hidden by horizons. Singularity hidden from external observer. DE is not A Non-unitarity and acausality hidden from external observer. Note: Effective field theory of GR allows for naked singularities, but **UV complete theory** does not.

Non-Unitarity of Effective Field Theory (EFT) in an Expanding Background

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dai Sector

Baryogenesis

Conclusions

• Hilbert space of EFT: $\mathcal{H} = \prod_k \mathcal{H}_k$

- where \mathcal{H}_k is the Hilbert space of the k'th **comoving** mode.
- UV cutoff required in physical coordinates
- Corresponding comoving UV cutoff is time-dependent
 - $k_{UV}(t) \sim a(t)$
 - \rightarrow non-unitarity.

Generalizing Penrose's Cosmic Censorship Hypothesis

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Singularity → trans-Planckian region.
Black hole horizon → Hubble horizon.

Demand: The external observer is shielded from non-unitarity associated with the trans-Planckian region by the Hubble horizon.

Note:

EFT of cosmology allows for violations of TCC.Conjecture: UV physics prohibits violations of TCC.

Generalizing Penrose's Cosmic Censorship Hypothesis

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

• Singularity \rightarrow trans-Planckian region.

• Black hole horizon \rightarrow Hubble horizon.

Demand: The external observer is shielded from non-unitarity associated with the trans-Planckian region by the Hubble horizon.

Note:

EFT of cosmology allows for violations of TCC.Conjecture: UV physics prohibits violations of TCC.

Generalizing Penrose's Cosmic Censorship Hypothesis

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

• Black hole horizon \rightarrow Hubble horizon.

Demand: The external observer is shielded from non-unitarity associated with the trans-Planckian region by the Hubble horizon.

Note:

- EFT of cosmology allows for violations of TCC.
- Conjecture: UV physics prohibits violations of TCC.

Application to Inflation

A. Bedroya, R.B., M. Loverde and C. Vafa., arXiv:1909.11106

< ≣ > ≣ ∽ ۹.0 23/54

Application to Inflation

A. Bedroya, R.B., M. Loverde and C. Vafa., arXiv:1909.11106

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

TCC implies:

$$rac{a(t_R)}{a(t_*)} I_{pl} < H(t_R)^{-1}$$

Demanding that inflation yields a causal mechanism for generating CMB anisotropies implies:

$$H_0^{-1} rac{a(t_0)}{a(t_R)} rac{a(t_R)}{a(t_*)} < H^{-1}(t_*)$$

Implications for Inflation

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Upper bound on the energy scale of inflation:

 $V^{1/4}$ < $3 \times 10^9 \text{GeV}$

\rightarrow upper bound on the primary tensor to scalar ratio *r*:

 $r < 10^{-30}$

Note: Secondary gravitational waves are generated from scalar fluctuations.

Implications for Inflation

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Upper bound on the energy scale of inflation:

 $V^{1/4}$ < $3 \times 10^9 \text{GeV}$

 \rightarrow upper bound on the primary tensor to scalar ratio *r*:

 $r < 10^{-30}$

Note: Secondary gravitational waves are generated from scalar fluctuations.

Swampland

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

• There is a vast landscape of effective field theories.

- Any space-time dimension, and number of fields, any shape of the potential, any field range, and value of Λ.
- Superstring theory is very constraining.
- Only a **small subset** of all EFTs is consistent with string theory.
- The rest lie in the swampland.

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Swampland Conjectures

H. Ooguri and C. Vafa, hep-th/0605264; G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, arXiv:1806.08362; H. Ooguri, E. Palti, G. Shiu and C. Vafa, arXiv:1810.05506.

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

What are conditions for habitable islands sticking out from the swamp?

- Bare $\Lambda \leq 0$.
- The effective field theory is only valid for Δφ < dm_{pl} (field range condition).
- The potential of φ obeys (de Sitter conjecture)

$$egin{array}{ccc} |rac{V'}{V}|m_{
hol}&\geq&c_1 ext{ or }\ rac{V''}{V}m_{
hol}^2&\leq&-c_2 \end{array}$$

Note: d, c_1, c_2 constants of order 1.

Unified DM/DE R. Branden- berger	
Standard Paradigm DE is not A No WIMP	Dark Enerαv cannot be Λ.

Reasoning

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

- φ is a string theory modulus field.
- Field range condition: move δφ ~ m_{pl} → tower of string states becomes massless and must be included in low energy EFT.

• **De Sitter conjecture**: moduli stabization → steep potential.

Example: S. Laliberte and R.B., arXiv:1911.00199:

Reasoning

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

- φ is a string theory modulus field.
- Field range condition: move δφ ~ m_{pl} → tower of string states becomes massless and must be included in low energy EFT.
- **De Sitter conjecture**: moduli stabization → steep potential.
- Example: S. Laliberte and R.B., arXiv:1911.00199:

Current Limits on WIMPs

Alternatives to WIMP DM Exist

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dai Sector

Baryogenesis

Conclusions

Alternatives to WIMP DM exist:

- Axions Well motivated, arising in the solution of the Strong CP Problem.
- Superfluid Dark Matter (see e.g. E. Ferreira arXiv:2005.03254 for a review)

Oltralight Dark Matter

•

Plan

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Introductior

- Standard Paradigm in Trouble
- Dark Energy cannot be Λ
 - Challenges for the WIMP Paradigm

3 Unified Model of DE, DM and Baryogenesis

4 Baryogenesis

5 Discussion and Conclusions

Motivation R.B. and J. Fröhlich, arXiv:2004.10025

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

- Can a single (complex) scalar field describe both dark matter and dark energy?
- Can one obtain baryogenesis as an added bonus?

See also R.B., J.F. and R. Namba, *Unified Dark Matter,* Dark Energy and baryogenesis via a cosmological wetting ransition JCAP **1909**, 069 (2019) [arXiv:1907.06353].

See also S. Alexander, R.B. and J.F. *Tracking Dark Energy from Axion-Gauge Field Couplings*, arXiv:1601.00057 [hep-th].

Motivation R.B. and J. Fröhlich, arXiv:2004.10025

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

- Can a single (complex) scalar field describe both dark matter and dark energy?
- Can one obtain baryogenesis as an added bonus?

See also R.B., J.F. and R. Namba, *Unified Dark Matter, Dark Energy and baryogenesis via a cosmological wetting transition* JCAP **1909**, 069 (2019) [arXiv:1907.06353].

See also S. Alexander, R.B. and J.F. *Tracking Dark Energy from Axion-Gauge Field Couplings*, arXiv:1601.00057 [hep-th].

Model R.B. and J. Fröhlich, arXiv:2004.10025

Unified DM/DE R. Brandenberger

Introductior

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Consider a complex scalar field $\boldsymbol{\zeta}$

$$\zeta \equiv e^{-(\varphi + i\theta)/f}$$

whose angular variable θ is an axion. Action:

$$egin{aligned} S &= \int d^4 x \sqrt{-g} iggl\{ rac{1}{2} \partial_\mu arphi \partial^\mu arphi + rac{1}{2} \partial_\mu heta \partial^\mu heta - & \ - & \Lambda e^{-2arphi/f} - V(arphi, heta) + \dots iggr\}, \end{aligned}$$

Potential energy function:

$$V(\varphi, \theta) = rac{1}{2} \mu^4 \sin^2(\theta/f) e^{-2\varphi/f}$$

Model R.B. and J. Fröhlich, arXiv:2004.10025

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Consider a complex scalar field $\boldsymbol{\zeta}$

$$\zeta \equiv e^{-(\varphi + i\theta)/f}$$

whose angular variable θ is an axion. Action:

$$egin{aligned} S &= \int d^4 x \sqrt{-g} iggl\{ rac{1}{2} \partial_\mu arphi \partial^\mu arphi + rac{1}{2} \partial_\mu heta \partial^\mu heta - & \ - & \Lambda e^{-2arphi/f} - V(arphi, heta) + \dots iggr\}, \end{aligned}$$

Potential energy function:

$$V(\varphi, \theta) = \frac{1}{2} \mu^4 \sin^2(\theta/f) e^{-2\varphi/f}$$

Model R.B. and J. Fröhlich, arXiv:2004.10025

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Consider a complex scalar field $\boldsymbol{\zeta}$

$$\zeta \equiv e^{-(\varphi + i\theta)/f}$$

whose angular variable θ is an axion. Action:

$$egin{aligned} \mathcal{S} &= \int d^4 x \sqrt{-g} iggl\{ rac{1}{2} \partial_\mu arphi \partial^\mu arphi + rac{1}{2} \partial_\mu heta \partial^\mu heta - & \ & - \Lambda e^{-2arphi/f} - V(arphi, heta) + \dots iggr\}, \end{aligned}$$

Potential energy function:

$$V(\varphi,\theta) = \frac{1}{2}\mu^4 \sin^2(\theta/f) e^{-2\varphi/f}$$

Equations of Motion

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Variational equations in an expanding cosmological background:

$$\ddot{\varphi} + 3H\dot{\varphi} = \left[\frac{2}{f}\Lambda + \frac{\mu^4}{f}\sin^2\frac{\theta}{f}\right]e^{-2\varphi/f},$$

$$\ddot{\theta} + 3H\dot{\theta} = -\frac{\mu^4}{f}\sin(\frac{\theta}{f})\cos(\frac{\theta}{f})e^{-2\varphi/f},$$

Roles of the fields:

- Dark matter: θ oscillates about $\theta = 0$.
- Dark energy: φ rolls at late times towards ∞ .

Equations of Motion

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Variational equations in an expanding cosmological background:

$$\ddot{\varphi} + 3H\dot{\varphi} = \left[\frac{2}{f}\Lambda + \frac{\mu^4}{f}\sin^2\frac{\theta}{f}\right]e^{-2\varphi/f},$$

$$\ddot{\theta} + 3H\dot{\theta} = -\frac{\mu^4}{f}\sin(\frac{\theta}{f})\cos(\frac{\theta}{f})e^{-2\varphi/f}.$$

Roles of the fields:

- Dark matter: θ oscillates about $\theta = 0$.
- Dark energy: φ rolls at late times towards ∞ .

Dark Energy Phase

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

After sufficient relaxation of θ :

$$\frac{1}{2}\mu^4 \sin^2(\theta/f) \ll \Lambda$$

 $\rightarrow \varphi$ evolves as a standard quintessence field:

 $\varphi(t)=f\ln(\beta t),$

$$eta^2 \simeq rac{4}{3} rac{\Lambda}{f^2} igg(rac{m_{
m pl}}{f}igg)^2 \,,$$

Leads to an equation of state $m{w}\equivm{p}/
ho$ with

$$w \simeq -1 + \frac{4}{3} \left(\frac{m_{pl}}{f}\right)^2.$$

ightarrow arphi behaves as DE for $f > m_{
m pl}$.

Dark Energy Phase

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

After sufficient relaxation of θ :

$$\frac{1}{2}\mu^4 \sin^2(\theta/f) \ll \Lambda$$

 $\rightarrow \varphi$ evolves as a standard quintessence field:

 $\varphi(t)=f\ln(\beta t),$

$$\beta^2 \simeq \frac{4}{3} \frac{\Lambda}{f^2} \left(\frac{m_{pl}}{f}\right)^2,$$

Leads to an equation of state $w \equiv p/\rho$ with

$$w \simeq -1 + \frac{4}{3} \left(\frac{m_{pl}}{f}\right)^2.$$

 $\rightarrow \varphi$ behaves as DE for $f > m_{pl}$.

Dark Matter Phase

While

DM/DE R. Brandenberger

Unified

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

$$\frac{1}{2}\mu^4 \sin^2(\theta/f) > \Lambda$$

• The axion dominates the energy-momentum tensor

• The axion undergoes dampled oscillations with amplitude A(t)

$${\cal A}(t)\,\sim\,a(t)^{-3/2}\,\sim\,T(t)^{3/2}$$
 .

• The axion dominates the source term in the equation of motion for φ

Resulting evolution of φ:

$$\varphi(t) = \alpha \ln(\frac{t}{t_{eq}}) + \varphi(t_{eq}).$$

Dark Matter Phase

While

DM/DE R. Brandenberger

Unified

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

$$\frac{1}{2}\mu^4 \sin^2(\theta/f) > \Lambda$$

- The axion dominates the energy-momentum tensor
- The axion undergoes dampled oscillations with amplitude A(t)

$${\cal A}(t) \, \sim \, {\it a}(t)^{-3/2} \, \sim \, {\it T}(t)^{3/2} \, .$$

• The axion dominates the source term in the equation of motion for φ

• Resulting evolution of φ :

$$\varphi(t) = \alpha \ln(\frac{t}{t_{eq}}) + \varphi(t_{eq}).$$

Early Phase

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Assume an early confining force which traps θ at $\theta = -\pi f/2$. \rightarrow early slow-rolling phase of θ :

$$\theta = -\frac{\pi f}{2} + \Delta \theta \, .$$

$$(\Delta heta)^{\cdot \cdot} + rac{3}{2t} (\Delta heta)^{\cdot} \simeq rac{\mu^4}{f^2} e^{-2 arphi / f} \Delta heta \, .$$

$$\Delta heta(t) \sim rac{t^{1/2}}{t_c^{1/2}} \Delta heta(t_c),$$

Early Phase II

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Slow rolling of φ during the early phase:

$$e^{-2arphi/f} \,=\, rac{f^2}{2\mu^4} rac{1}{t^2}\,.$$

Numerical Evolution: θ field

Thanks to Z. Wang for the numerical work

Numerical Evolution - Field Values

Numerical Evolution - Equation of State

Parameter Requirements

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Parameters: Λ, μ, T_c, f

• **f** determines the equation of state in the DE phase: $f \sim m_{pl}$.

Λ has the right value to yield DE today.

Note: no solution of the coincidence problem!

 μ and T_c chosen such that we get the observed matter energy density today.

• Note: dark matter mass set by μ

$$m_{DM} \sim rac{\mu^2}{f}$$

Parameter Requirements

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Parameters: Λ, μ, T_c, f

- f determines the equation of state in the DE phase: $f \sim m_{pl}$.
- A has the right value to yield DE today.
- Note: no solution of the coincidence problem!
- μ and T_c chosen such that we get the observed matter energy density today.
- Note: dark matter mass set by μ

$$m_{DM} \sim rac{\mu^2}{f}$$

Parameter Requirements

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Parameters: Λ, μ, T_c, f

- *f* determines the equation of state in the DE phase: $f \sim m_{pl}$.
- A has the right value to yield DE today.
- Note: no solution of the coincidence problem!
- μ and T_c chosen such that we get the observed matter energy density today.
- Note: dark matter mass set by μ

$$m_{DM} \sim rac{\mu^2}{f}$$

Parameter Choices

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

 $m_{DM} \equiv m_a 1 \mathrm{eV}$,

$$\mu \sim m_a^{1/2} 10^5 \text{GeV}$$

 $T_c \sim m_a 10^{14} \text{GeV}$.

45/54 E > + E > + E > + E > + E + − 2 + −

Plan

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dark Sector

Baryogenesis

Conclusions

Introduction

Standard Paradigm in Trouble

- Dark Energy cannot be Λ
 - Challenges for the WIMP Paradigm

Unified Model of DE, DM and Baryogenesis

Discussion and Conclusions

Coupling to the Baryon Current

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Assume a coupling between ζ and the baryon current:

 $\delta \mathcal{L} = \tilde{\alpha} \partial_{\mu} \Im \zeta j_{B}^{\mu},$

Can be generated by the chiral anomaly for the baryon current:

$$\partial_\mu j^\mu_B\,\sim\, {g^2\over 16\pi^2}{\cal F}\wedge{\cal F}\,,$$

ㅋㅋ 《레이 《문이 《문이 문》 신입어?

Spontaneous Baryogenesis

A. Cohen and D. Kaplan, Phys. Lett. 199B, 251 (1987)

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

During the early phase when both φ and θ are uniformly rolling a chemical potential for baryon number is induced:

$$\mu_{\boldsymbol{B}} = \tilde{\alpha}(\Im\zeta)^{\cdot} = \frac{\tilde{\alpha}}{f} \big[\dot{\theta} - \frac{\dot{\varphi}}{f} \theta \big] \boldsymbol{e}^{-\varphi/f}$$

Evaluation:

$$\mu_B \sim \tilde{lpha} rac{T^4}{\mu^2 m_{
m pl}} \, ,$$

Induced baryon number density:

$$n_B \sim \mu_B T^2$$
,

Evaluation:

$$\frac{n_B}{s} \sim \tilde{\alpha} \left(\frac{T}{\mu}\right)^2 \frac{T}{m_{pl}}, \quad \text{are even a second state}$$

Baryogenesis from Hypermagnetic Helicity

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

Baryon current anomaly \rightarrow

$$\Delta N_B = C_y \frac{\alpha_y}{8\pi} \Delta \mathcal{H},$$

Helicity density:

$$\dot{h} = -2 < E \cdot B > ,$$

Magnetohydrodynamics \rightarrow

$$E \cdot B = rac{1}{\sigma} B \cdot (\nabla \wedge B)$$

 $\sigma \sim T$: conductivity

$$= \int_{k} \frac{d^{3}k}{(2\pi)^{3}} |k|^{3} (|A_{k,+}|^{2} - |A_{k,-}|^{2}),$$

Baryogenesis from Hypermagnetic Helicity

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

Baryon current anomaly \rightarrow

$$\Delta N_B = C_y \frac{\alpha_y}{8\pi} \Delta \mathcal{H},$$

Helicity density:

$$\dot{h} = -2 < E \cdot B > ,$$

Magnetohydrodynamics \rightarrow

$$E \cdot B = rac{1}{\sigma} B \cdot (
abla \wedge B),$$

 $\sigma \sim T$: conductivity

$$< B \cdot (
abla \wedge B) > = \int_k rac{d^3k}{(2\pi)^3} \, |k|^3 ig(|A_{k,+}|^2 - |A_{k,-}|^2ig) \, ,$$

Growth of Helicity

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dat Sector

Baryogenesis

Conclusions

Assume the coupling

$$\delta \mathcal{L}_2 = lpha rac{\Im \zeta}{4} \widetilde{Y}_{\mu
u} Y^{\mu
u} \,,$$

Equation of motion for the gauge field becomes:

$$\ddot{\boldsymbol{A}}_{\boldsymbol{k},\pm} + \left(\boldsymbol{k}^{2} \pm \alpha \boldsymbol{k}(\Im \zeta)^{\cdot}\right) \boldsymbol{A}_{\boldsymbol{k},\pm} \,=\, \boldsymbol{0}\,,$$

$$\ddot{\mathcal{A}}_{k} + (k^{2} \pm \alpha k e^{-\varphi/f} \frac{\dot{\theta}}{f}) \mathcal{A}_{k} = 0.$$

Exponential growth for $k < k_c$:

$$k_c = \alpha \tau^{-1} \left(\frac{T_c}{\mu}\right)^2.$$

Resulting Baryon to Entropy Ratio

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

Duration of the instability is set by **back-reaction**: density in the produced gauge particles must remain smaller than the pre-existing radiation density.

Resulting baryon to entropy ratio:

$$rac{\Delta n_B}{s} \sim C_y rac{lpha_y}{8\pi} lpha^{-1/2}$$

ロ > < (引 > < 言 > < 言 > 、言 > 、言 > う < へ () 51/54

Plan

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

Introduction

- Standard Paradigm in Trouble
- Dark Energy cannot be Λ
 - Challenges for the WIMP Paradigm

Unified Model of DE, DM and Baryogenesis

4 Baryogenesis

5 Discussion and Conclusions
Embedding of the Model in a UV Theory

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

• Example: ζ is the axion-dilaton field of string theory:

$$\zeta = \boldsymbol{e}^{-\Phi} + \boldsymbol{i}\boldsymbol{C}_0$$

- Φ : dilaton; C_0 : Ramond-Ramond zero form axion.
- Classical level: potential flat in angular direction.
- Quantum level: instantons break the symmetry and generate a potential.
- Example: ζ is a complex scalar field whose real part describes the size of the compact space.
- Negative curvature of the internal manifold → positive exponential potential for the real part.

Embedding of the Model in a UV Theory

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Darl Sector

Baryogenesis

Conclusions

• Example: ζ is the axion-dilaton field of string theory:

$$\zeta = \boldsymbol{e}^{-\Phi} + \boldsymbol{i}\boldsymbol{C}_0$$

- Φ : dilaton; C_0 : Ramond-Ramond zero form axion.
- Classical level: potential flat in angular direction.
- Quantum level: instantons break the symmetry and generate a potential.
- Example: ζ is a complex scalar field whose real part describes the size of the compact space.
- Negative curvature of the internal manifold → positive exponential potential for the real part.

Conclusions

Unified DM/DE R. Brandenberger

Introduction

Standard Paradigm DE is not A No WIMP

Unified Dar Sector

Baryogenesis

Conclusions

- Unified model of dark energy and dark matter
- Complex scalar field ζ
- Radial component yields dark energy.
- Angular component yields an axion acting as dark matter.
- Early evolution: uniform motion of ζ → spontaneous breaking of CPT symmetry → spontaneous baryogenesis.