
INTRODUCTION 

TO HACKING
VINCENZO CIASCHINI

CNAF/CERN TALKS

10/6/2020



SUMMARY

 Introduction

 Caveats

 Instructions



WHAT IS HACKING?

 In this context, is testing.

 Testing applications to determine the presence (or absence) of security issues



WHY?

 Because applications are complex.
 Many small moving parts (dependencies, protocols, apis, interfaces, services, etc...) Because security is complex.

 Because security is complex.

 In part because of application complexity.

 But also as a consequence of developer's lack of focus on security.
 Including also knowledge of ways of attack.

 It is also system property.

 Or a single unsecure component or setup which breaks everything else.

 Like a root:root username passwords (or admin:admin)



WHY? (CONT.D)

 Security issues are bugs and can be found during testing!

 Yes, but...

 Testing usually deals with functional issues.

 Can be done with a checklist.

 Testing for security issues requires specialized knowledge, experimentation and constant studying

 There are no useful checklists. Exploits are very finicky.



WHY (FINAL)

 But why spend time, effort and resources in it? What's the worst that could happen?

 Answer: Disruption of service, Loss of money, Loss of reputation, Penal responsibilities...

 See Stefan's slides for more details



CAVEATS

 Things to watch out for



CAVEAT 1

 Hacking your way in a system is ILLEGAL!

 If done without proper authorization.

 Hacking random services is a penal crime under most (all?) jurisdictions.

 So be sure to always be authorized to perform whatever tests you want.

 And follow instructions on what you are or are not authorized to do.

 E.g: The application has a database. Can you attempt deleting it?



CAVEAT 2

 Hacking is not a riskless activity.

 It is an exploratory activity. If the bugs were known, and the consequences understood, they would not be there

 Testing can crash a service, delete data, or make it unusable.

 Even with apparently harmless exploits.

 Even when you do not want to cause damage.



CAVEAT 3

 Privacy

 It is possible that a successful attack would expose a user's private information.

 If at all possible, try to attack your own user.

 Or a user who has explicitly given you permission to do so (and keep documentation of that permission)

 Seek advice from the administrators in case of doubt

 They may even create dummy users for you to attack.



INSTRUCTIONS

 Basic steps



HOW TO?

 So, how to do hacking?

 First, gather information.

 Second, study the environment.

 Third, study known attacks

 Fourth, attack



1. GATHER INFORMATION

 Is there a manual for the program/service you intend to attack?

 Is there any kind of documentation?

 Sources available?

 Dependencies are discoverable?

 Maybe a version you can install and test yourself?



IS THERE A MANUAL?

 A manual is useful because it will explicitly document all user-facing (or admin-facing) endpoints where input can be 

given.

 It may also explain that what appears as a single program is a set of programs working together

 More targets! Possible communication weakpoints!



DOCUMENTATION IN GENERAL

 All kinds of documentation is useful.

 It may list dependencies.

 It may document deployment choices

 It may tell you which programming language is used



SOURCES

 The sources tell the internal workings of the application.

 It may be used as a guide to exploitation.

 Can describe endpoints that are otherwise non-discoverable.

 Can give you ideas on what to attack.

 E.g: If there is the concepts of "users" and "permissions" the code implementing it is especially interesting



DEPENDENCIES

 (Almost) No program is self-contained.

 They all depend on libraries.

 Libraries themselves may have bugs. Maybe even known bugs. Maybe with known exploits.



SELF-CONTAINED VERSION AVAILABLE FOR PERSONAL USE?

 Can perform all kinds of testing on your own machine without needing permission.

 (but make sure it is REALLY self-contained)



STUDY THE ENVIRONMENT

 Very few things work by themselves.

 Applications run on an operating system.

 Web services run on web server.

 Plugins run on a framework.

 Maybe there is a firewall?

 This are all potentially vulnerable.

 And therefore, they are all of interest.

 And they may all impact the service you are testing.



STUDY THE ENVIRONMENT

 Discover the OS (nmap –O).

 Discover the framework (Apache? Tomcat? Wordpress?)

 Check for services running on the server (nmap)

 For each object found, check for known vulnerabilities (google, www.exploit-db.com, cvedetails.com, etc...)

 And test them! (warning! Some exploits may need to be rejiggled)

http://www.exploit-db.com




STUDY KNOWN ATTACK TECHNIQUES

 If you do not know something is possible, you cannot test for it.

 E.g.: you can inject code in input fields, you can force a user to do a request, you can alter the messages an 

application uses to communicate, etc...

 Good places to keep informed a r/hacking, r/pentest, seclists.org/fulldisclosure, seclists.org/oss-sec, many other 

you will find in time.



FINALLY, ATTACK

 Now you can try attacking the application. How?

 First if you have identified a set of known vulnerabilities in the previous steps, try them.

 If they at first don't work, alter them if necessary and try again.



FINALLY, ATTACK (CONT.D)

 (Following examples will assume a web application)

 Now, try to attack the application proper.

 All input fields are interesting targets

 There are more fields than readily apparent



 Are there forms in the application?

 How about inputing: <script>alert(1);<script> ?

 Or: "; ls ?

 Or: ' OR 1==1, --

 Or: '; DROP DATABASE; COMMIT; ?

 Or: http://other.victim.com/ ?

 Or any combination thereof?

 Or variants ?

 If the application refuses a value how about bypassing it and specifying it directly?

 Also, are there hidden fields?

 Look at the html sources to find them

 What happens if you change the value?

http://other.victim.com/


 Other "hidden" fields...

 The URL!

 Try adding /../etc

 Or alter the path in any other way

 Good candidates are also log/, admin/ …

 There are several cases where unintended paths are exposed

 Cookies!

 What are they? What they do contain? What if you change them?



UNINTENDED USAGE

 Think about what a feature does, not what is supposed to do.

 E.g.: Avatar upload form -> To upload an image

 What about uploading some other type of file?

 Interesting "image" : <?php system($_GET['cmd']); ?>

 Even more interesting one...: GIF89a<?php system($_GET['cmd']); ?>

 Call them with: http://victim.url.com/uploaded/file.gif?cmd=/sbin/reboot



 You have the sources?

 Read them.

 In particular, read sections where user privileges are checked.

 Can you control any of the data used?

 If so, try to alter the values to obtain new privileges.



 Best of all...

 Are you even sure you need to go through the application? Or its checks?

 Can you bypass any?

 If one application acts as a "gateway" to another, can you contact the second directly?



REPORTING

 So, you have found some vulnerability... what to do?

 Report it to the service owner.

 DO NOT write a blog article (unless given permission by the service owner)



HOW TO GET BETTER?

 Practice, practice, practice!

 No other way.

 There are many online services that help with that:

 Google gruyere, vulnhub, hackthebox, etc...


