### Halo measurements using collimator scans Status and plans for Run 3



Hector Garcia Morales University of Oxford/CERN

June 16, 2020



Motivation

Beam profile

Beam profile using collimator scans

2018 measurement campaign

Beam profile modeling

Run 3 measurement campaign





Many studies are very interested in having a reliable model of the LHC beam profile. In particular of the tail population for HL-LHC when a significant beam intensity is expected.

- ► Collimation (Crystals, hollow electron lens,...)
- ▶ Crab cavities.
- ▶ Ground motion.
- ▶ Noise effects.





- ▶ Ideal world:  $\sigma = \sqrt{\epsilon\beta}$
- ▶ Real world:
  - ▶ Non-linearities.
  - ▶ Imperfections.
  - ▶ Chromatic beam.
  - ► Space-charge.
  - ▶ Beam-beam.
  - ▶ PS ripple, ground motion,...

Many ways to measure the beam profile:

- ► Wire scanner.
- ► BSRT.
- ► Coronograph.
- ▶ Collimator scans.

# What is the actual LHC beam profile?





- ▶ Ideal world:  $\sigma = \sqrt{\epsilon\beta}$
- ▶ Real world:
  - ▶ Non-linearities.
  - ► Imperfections.
  - ▶ Chromatic beam.
  - ► Space-charge.
  - ▶ Beam-beam.
  - ▶ PS ripple, ground motion,...

Many ways to measure the beam profile:

- ► Wire scanner.
- ► BSRT.
- ► Coronograph.
- ▶ Collimator scans.

## What is the actual LHC beam profile? We do not really know...



### Beam profile using collimator scans

#### Procedure

- Move in one jaw of the collimator in small steps (50 microns).
- At each step, record BLM data at the collimator location.
- Calibrate BLM signal (Gy/s) with BCT intensity signal (p).

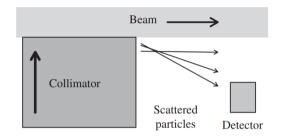



Figure: Schematic view of a collimator scan.

#### Pros and cons

- ▶ Most accurate method available for beam profile reconstruction.
- ▶ Slow and destructive (need to re-inject after every scraping).
- Only a few bunches at a time.



In 2018, End-of-Fill MDs to perform collimator scrapings.

- ▶ Injection: 6 H-plane. 2 V-plane. B1/B2,
- ▶ Flat Top: 1 scraping in V-plane. B1/B2.
- ► Total: 18 measurements.

Reminder: 1 fill = 2 measurements (1 per beam).



2018 measurement campaign (H-plane, injection)

| Date       | Beam | Scraping | $> 2\sigma$ | $> 3\sigma$ | $> 4\sigma$ |
|------------|------|----------|-------------|-------------|-------------|
| 30/07/2018 | B1   | Full     | 18%         | 5.3%        | 2%          |
|            |      |          | 22%         | 7.7%        | 3%          |
|            |      |          | 24%         | 8%          | 3%          |
| 19/09/2018 | B1   | Full     | 25%         | 8%          | 1.9%        |
| 30/07/2018 | B2   | Full     | 21%         | 6%          | 2%          |
|            |      |          | 25%         | 10%         | 3%          |
|            |      |          | 19%         | 6%          | 2%          |

Table: Fraction of particles in the horizontal plane evaluated beyond  $2\sigma$ ,  $3\sigma$  and  $4\sigma$ . Collimator sigmas  $\epsilon = 3.5\mu$ m



2018 measurement campaign (V-plane, injection)

| Date    | Beam | Scraping | $> 2\sigma$ | $> 3\sigma$ | $> 4\sigma$ |
|---------|------|----------|-------------|-------------|-------------|
| 07/2018 | B1   | Full     | 34%         | 13%         | 6%          |
|         |      |          | 27%         | 9%          | 4%          |
| 07/2018 | B2   | Full     | 30%         | 9%          | 3%          |
|         |      |          | 29%         | 10%         | 3%          |

Table: Fraction of particles in the vertical plane evaluated beyond  $2\sigma$ ,  $3\sigma$ ,  $4\sigma$ . Collimator sigmas  $\epsilon = 3.5 \mu m$ 





#### Double-Gaussian

Levy-Student

$$f(x) = \frac{I_1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} + \frac{I_2}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$$
(1)  
(1)  
where  $\mu_{1,2} = 0$  and  $I_1 + I_2 = 1$ . (2)

However, other models can be considered (q-Gaussian, parabolic,...).



## Beam profile modeling (H-plane, injection)

| Date    | Beam | Scraping              | D     | ouble ( | Levy-Student |            |       |       |
|---------|------|-----------------------|-------|---------|--------------|------------|-------|-------|
|         |      |                       | $I_1$ | $I_2$   | $\sigma_1$   | $\sigma_2$ | n     | a     |
| 05/2018 | B1   | TAILS                 | 0.69  | 0.3     | 1.96         | 1.99       | 7.82  | 5.18  |
| 07/2018 | B1   | FULL                  | 0.66  | 0.33    | 0.76         | 1.68       | 4.14  | 1.76  |
|         |      | FULL                  | 0.62  | 0.37    | 0.76         | 1.73       | 3.56  | 1.68  |
|         |      | FULL                  | 0.67  | 0.32    | 0.79         | 1.83       | 3.81  | 1.76  |
| 09/2018 | B1   | $\operatorname{FULL}$ | 0.7   | 0.3     | 1.72         | 2.14       | 6.74  | 4.53  |
|         |      | FULL                  | 0.7   | 0.3     | 1.65         | 1.72       | 9.41  | 4.92  |
| 2017    | B2   | FULL                  | 0.59  | 0.4     | 0.83         | 0.97       | 8.52  | 2.48  |
| 05/2018 | B2   | TAILS                 | 0.85  | 0.14    | 1.88         | 2.21       | 99.99 | 19.11 |
| 07/2018 | B2   | FULL                  | 0.72  | 0.27    | 0.77         | 1.7        | 4.67  | 1.83  |
|         |      | FULL                  | 0.61  | 0.38    | 0.77         | 1.52       | 4.88  | 1.99  |
|         |      | FULL                  | 0.63  | 0.36    | 0.68         | 1.69       | 3     | 1.39  |



| Date    | BEAM | SCRAPING | MODEL           |       |            |            |              |      |  |
|---------|------|----------|-----------------|-------|------------|------------|--------------|------|--|
|         |      |          | DOUBLE GAUSSIAN |       |            |            | LEVY STUDENT |      |  |
|         |      |          | $I_1$           | $I_2$ | $\sigma_1$ | $\sigma_2$ | n            | a    |  |
| 07/2018 | B1   | FULL     | 0.69            | 0.3   | 0.92       | 2.07       | 4.1          | 2.09 |  |
|         |      | FULL     | 0.72            | 0.27  | 0.87       | 2.14       | 4.11         | 1.96 |  |
| 07/2018 | B2   | FULL     | 0.79            | 0.2   | 1.05       | 2.2        | 7.36         | 3.06 |  |
|         |      | FULL     | 0.62            | 0.37  | 0.89       | 1.81       | 4.53         | 2.2  |  |

Table: Values of the parameters, of both Double Gaussian and Levy-Student models, extracted from the fitted profile in the vertical plane. Collimator sigmas  $\epsilon = 3.5 \mu m$ 



Beam profile modeling (H and V-plane, injection)

| Beam | Double        | e Gaussian          |
|------|---------------|---------------------|
|      | $I_{1}/I_{2}$ | $\sigma_2/\sigma_1$ |
| B1   | 2.1           | 1.01                |
|      | 2             | 2.33                |
|      | 1.67          | 2.27                |
|      | 2.09          | 2.31                |
|      | 2.33          | 1.24                |
|      | 2.33          | 1.04                |
| B2   | 1.47          | 1.16                |
|      | 6.07          | 1.17                |
|      | 2.66          | 2.2                 |
|      | 1.6           | 1.97                |
|      | 1.75          | 2.48                |

| BEAM | DOUE      | BLE GAUSSIAN MODEL  |
|------|-----------|---------------------|
|      | $I_1/I_2$ | $\sigma_2/\sigma_1$ |
| B1   | 3         | 2.25                |
|      | 2.66      | 2.45                |
| B2   | 3.95      | 2.09                |
|      | 1.67      | 2.03                |

Table: Ratio between the intensities and variances values of the Double Gaussian model, obtained from the fits in the horizontal (left) and vertical plane (right).



Beam profile modeling (V-plane, Flat Top)

• Only one measurement per beam available.

| Date    | BEAM | SCRAPING | MODEL |        |            |              |      |      |  |
|---------|------|----------|-------|--------|------------|--------------|------|------|--|
|         |      |          | DOU   | JBLE ( | GAUSS      | LEVY STUDENT |      |      |  |
|         |      |          | $I_1$ | $I_2$  | $\sigma_1$ | $\sigma_2$   | n    | a    |  |
| 07/2018 | B1   | FULL     | 0.54  | 0.45   | 0.17       | 0.52         | 2    | 0.31 |  |
| 07/2018 | B2   | FULL     | 0.77  | 0.22   | 0.24       | 0.59         | 4.96 | 0.58 |  |

Table: Values of the parameters, of both Double Gaussian and Levy-Student models, extracted from the fitted profile in the vertical plane. Collimator sigmas  $\epsilon = 3.5 \mu m$ 



Beam profile modeling (V-plane, Flat Top)

- ▶ Significant difference with respect to injection.
- ▶ Difference between B1 and B2.
- ▶ Only one case per beam. Need more statistics.

| BEAM | DOUBLE GAUSSIAN MODEL |                     |  |  |  |  |
|------|-----------------------|---------------------|--|--|--|--|
|      | $I_{1}/I_{2}$         | $\sigma_2/\sigma_1$ |  |  |  |  |
| B1   | 1.2                   | 3.05                |  |  |  |  |
| B2   | 3.5                   | 2.45                |  |  |  |  |

Table: Ratio between the intensities and variances values of the Double Gaussian model, obtained from the fit in the vertical plane. Collimator sigmas  $\epsilon = 3.5 \mu m$ 





| Plane | Beam | $I_1$            | $I_2$            | $\sigma_1$       | $\sigma_2$       |
|-------|------|------------------|------------------|------------------|------------------|
| Hor.  | B1   | $0.66\pm0.028$   | $0.33 \pm 0.025$ | $1.01\pm0.411$   | $1.85\pm0.178$   |
|       | B2   | $0.64 \pm 0.049$ | $0.35\pm0.049$   | $0.76 \pm 0.053$ | $1.47\pm0.297$   |
| Vert. | B1   | $0.71 \pm 0.015$ | $0.29 \pm 0.085$ | $0.9\pm0.025$    | $2.11 \pm 0.034$ |
|       | B2   | $0.71 \pm 0.085$ | $0.29 \pm 0.085$ | $0.97\pm0.08$    | $2.01 \pm 0.195$ |

Table: Average and standard deviation evaluated on the parameters obtained from the fitted profile, computed using the Double Gaussian model. Collimator sigmas  $\epsilon = 3.5 \mu m$ 



The most common model used so far to represent the beam profile has been a Double-Gaussian distribution with parameters,

$$\frac{I_1}{I_2} = \frac{0.65}{0.35}, \quad \frac{\sigma_1}{\sigma_2} = \frac{1}{2} \tag{3}$$

- ▶ This model might work well at injection (not far from latest analysis).
- ▶ We have observed some cases with very high tail population.
- ▶ At Flat Top the model may be significantly different.



Besides tail population measurements, via collimator scans we can also determine the diffusion of particles and halo repopulation.

- Several measurement campaigns between 2016 and 2018 at 6.5 TeV.
- Overpopulated tails also observed.
- ► It was found that the diffusion speed was higher than those measured at 4 TeV.
- ► This is ok for the LHC but concern arises for the efficient operation of the HL-LHC.
- Solution: implementation of active halo control methods (hollow electron lens).




Figure: Example for recorded data and fit results for one of the outward steps.



<sup> $^{2}$ </sup>A. Gorzawski et al. Phys. Rev. Accel. Beams 23, 044802 (2020)

A better understanding of the beam profile under different machine conditions is required.

- ▶ Beams: B1, B2.
- ▶ Planes: H, V, Skew.
- ▶ Cycle stages: Injection, Flat Top, Collision.
- ▶ Specific machine configurations and beam parameters.

It is important to have feedback from different teams/studies to define the best strategy.



Obtaining an accurate model of the beam profile (tails in particular) is very important for many studies.

- ▶ The data set available always shows overpopulated tails.
  - ▶ Need more cases in different configurations.
- ▶ Can we make any progress in a pure theoretical model?
- ▶ What is the status of new instrumentation (e.g. coronograph)?
- ▶ What are the requirements/preferences from different studies?



Obtaining an accurate model of the beam profile (tails in particular) is very important for many studies.

- ▶ The data set available always shows overpopulated tails.
  - ▶ Need more cases in different configurations.
- ▶ Can we make any progress in a pure theoretical model?
- ▶ What is the status of new instrumentation (e.g. coronograph)?
- ▶ What are the requirements/preferences from different studies?

# Thank you!





| Date    | Data           | LHC       | Intensity             | Scraping | Plane | Beam | $\epsilon$         |
|---------|----------------|-----------|-----------------------|----------|-------|------|--------------------|
|         | $\mathbf{set}$ | Cycle     | [ <b>p</b> ]          |          |       |      | $[\mu \mathbf{m}]$ |
| 2017    | 1              | Injection | $1.15 \times 10^{11}$ | Full     | Н     | B1   | -                  |
|         |                |           |                       |          |       | B2   | -                  |
| 05/2018 | 1              | Injection | $3 \times 10^{14}$    | Tails    | Н     | B1   | 1.57               |
|         |                |           |                       |          |       | B2   | 1.23               |
| 07/2018 | 3              | Injection | $1.15 	imes 10^{11}$  | Full     | Η     | B1   | 1.90               |
|         |                |           |                       |          |       | B2   | 1.73               |
|         |                |           |                       |          |       | B1   | 1.72               |
|         |                |           |                       |          |       | B2   | 1.58               |
|         |                |           |                       |          |       | B1   | 1.61               |
|         |                |           |                       |          |       | B2   | 1.81               |





| Date    | Data           | LHC       | Intensity             | Scraping | Plane | Beam | $\epsilon$         |
|---------|----------------|-----------|-----------------------|----------|-------|------|--------------------|
|         | $\mathbf{set}$ | Cycle     | [ <b>p</b> ]          |          |       |      | $[\mu \mathbf{m}]$ |
| 07/2018 | 2              | Injection | $1.15 \times 10^{11}$ | Full     | V     | B1   | 1.49               |
|         |                |           |                       |          |       | B2   | 1.67               |
|         |                |           |                       |          |       | B1   | 1.69               |
|         |                |           |                       |          |       | B2   | 1.49               |
| 07/2018 | 1              | Injection | $1.15 \times 10^{11}$ | Full     | S     | B1   | -                  |
|         |                |           |                       |          |       | B2   | -                  |
| 07/2018 | 1              | Flat Top  | $1.15\times10^{11}$   | Full     | V     | B1   | 1.64               |
|         |                |           |                       |          |       | B2   | 1.83               |
| 09/2018 | 1              | Injection | $1.15\times10^{11}$   | Full     | Η     | B1   | 1.55               |

