

Measurement of fringe fields (of MQXF triplet quadrupoles)

L. Fiscarelli S. Izquierdo Bermudez and WP3 colleagues from USA

Special Joint HiLumi WP2/WP3 Meeting June 30, 2020

Outline

- Introduction
- Available measurements
- Expected field profile from calculations
- What we plan to do for the series magnets

Fringe fields

 The fringe field is the field across the magnet end-regions where a large variation in the longitudinal direction is present

Fringe fields and other figures

Probe length

The rotating-coil probe gives the integral of the field harmonics over the sensor length

Field harmonics and fringe fields

- Harmonic measurements are done with rotating coils of a given length they give integral values over that length
 - If the rotating coil extremes are in a region where the field does not vary with *z*, one can use the 2d harmonic expansion for the integral

- If the rotating coil extremes are in a region
 where the field vary with *z*, one cannot use the
 2d harmonic expansion for the integral
- One has to use a more complicated expansion

E. Todesco, Multipolar expansion of magnetic field, <u>https://indico.cern.ch/event/915748/</u>

Available measurements

 Probes with different lengths are used in the different laboratories and for different conditions

At ambient temperature	At cryogenic temperature
Short models	
scanning 130 mm	fixed 5 x 500 mm
scanning 110 mm	scanning 110 mm
Long magnets	
scanning 600 mm	fixed 6 x1300 mm*
scanning 110 mm	scanning 110 mm
	At ambient temperature Short models Scanning 130 mm scanning 110 mm Long magnets scanning 600 mm scanning 110 mm

- We take as example the magnets tested at CERN
 - MQXFS3c
 - MQXFS4a
 - MQXFS6a
- Z-scanning (130-mm step) only at ambient temperature (low field level)

- We take as example one of the magnets tested in USA
 - MQXFAP2
- Z-scanning (110-mm step) at ambient temperature and cryogenic temperature (high field)

Long magnets

Long magnets

- We take as example the only magnet tested at CERN
 - MQXFBP1
- Only data at ambient temperature (600 mm)
- We check the other multipoles across the ends (normalized to central field)

MQXFBP1

MQXFBP1

Strategy for measurements of series magnets

- At ambient temperature
 - Probe length 600 mm
 - 13 positions (2 end-regions, 11 straight section)

L. Fiscarelli - Measurement of fringe fields - June 30, 2020

Strategy for measurements of series magnets

- At cryogenic temperature
 - Probe length of 1300 mm
 - 6 positions (2 end-regions, 4 straight section)

Conclusions

- Accurate measurement of the field profile across the magnet ends is difficult
 - Systematic errors when using rotating coils
 - Very sensitive to positioning
- Knowing the magnet geometry and properties, calculations can give reliable results
 - Cross-check with measurement on one of the magnet
- We will provide measurements of the fringe fields integrated over the ends regions

Thank you!

L. Fiscarelli - Measurement of fringe fields - June 30, 2020