
ROOT : Outlook and
Developments

WLCG Jamboree Amsterdam
16-18 June 2010

René Brun/CERN

Foreword

Since 1995 the ROOT system is in continuous
development in all areas: interpreters, 2D and 3D
graphics, Mathlibs and statistics, and of course I/O.

In this talk, I concentrate on recent developments to
speed-up the I/O. In particular these developments will
open new possibilities in client-server applications.

Remote file access in WANs with efficient caching will
be the main topic of this talk.

17 June 20102Rene Brun: ROOT developments

ROOT I/O
A short overview

of the main features

17 June 2010Rene Brun: ROOT developments 3

Main features

Designed for write once and read many times

but also support for object deletion and write in multiple
jobs.

Simple file format described in one slide

Two types of objects: keys and trees

keys for objects like histograms, geometries (Unix-like)

trees for collections of similar objects (HEP events)

self-describing portable and compact files

client-server support

17 June 2010Rene Brun: ROOT developments 4

17 June 2010

ROOT file structure

5Rene Brun: ROOT developments

Objects in directory
/pippa/DM/CJ

eg:
/pippa/DM/CJ/h15

A ROOT file
pippa.root

with 2 levels of
sub-directories

17 June 20106Rene Brun: ROOT developments

Rene Brun: ROOT developments 7

File types & Access

Local

File

X.xml

hadoop Chirp

CastorDcacheLocal

File

X.root

http rootd/xrootd

Oracle

SapDb

PgSQL

MySQL

TFile

TKey/TTree

TStreamerInfo

user

TSQLServer

TSQLRow

TSQLResult

TTreeSQL

17 June 2010

17 June 2010

Memory <--> Tree
Each Node is a branch in the Tree

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
T.Fill()

T.GetEntry(6)

T

Memory

8Rene Brun: ROOT developments

Automatic branch creation from
object model

float a;
int b;
double c[5];
int N;
float* x; //[N]
float* y; //[N]
Class1 c1;
Class2 c2; //!
Class3 *c3;
std::vector<T>;
std::vector<T*>;
TClonesArray *tc;

17 June 20109Rene Brun: ROOT developments

branch
buffers

ObjectWise/MemberWise Streaming

a
b
c
d

a1b1c1d1a2b2c2d2…anbncndn

a1a2..anb1b2..bnc1c2..cnd1d2..dn

a1a2…an

b1b2…bn

c1c2…cn

d1d2…dn

3 modes to stream
an object

member-wise
gives better
compression

17 June 201010Rene Brun: ROOT developments

8 leaves of branch
Electrons

Browsing a TTree with TBrowser

A double click
To histogram

The leaf

8 branches of T

17 June 201011Rene Brun: ROOT developments

17 June 2010

Data Volume & Organization

100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree

TChain

A TChain is a collection of TTrees or/and TChains

A TFile typically contains 1 TTree

A TChain is typically the result of a query to the file catalogue

12Rene Brun: ROOT developments

Queries to the data base

via the GUI (TBrowser of TTreeViewer)

via a CINT command or a script

tree.Draw(“x”,”y<0 && sqrt(z)>6”);

tree.Process(“myscript.C”);

via compiled code

chain.Process(“myselector.C+”);

in parallel with PROOF

17 June 2010Rene Brun: ROOT developments 13

ROOT I/O
Current developments

Caches and Caches
Speed-up

Parallel Merge

17 June 2010Rene Brun: ROOT developments 14

Buffering effects

Branch buffers are not full at the same time.

A branch containing one integer/event and with a
buffer size of 32Kbytes will be written to disk every
8000 events, while a branch containing a non-split
collection may be written at each event.

This may give serious problems when reading if the
file is not read sequentially.

17 June 201015Rene Brun: ROOT developments

Tree Buffers layout
Example of a Tree with 5 branches

b1 : 400 bytes/event

b2: 2500 ± 50 bytes/ev

b3: 5000 ± 500 bytes/ev

b4: 7500 ± 2500 bytes/ev

b5: 10000 ± 5000 bytes/ev

17 June 2010Rene Brun: ROOT developments 16

10 rows of 1 MByte
in this 10 MBytes file

typical
Trees
have

several
hundred
branches

each branch has
its own buffer
(8000 bytes)

(< 3000 zipped)

17 June 2010Rene Brun: ROOT developments 17

Looking inside a ROOT Tree

• TFile f("h1big.root");

• f.DrawMap();

3 branches

have been

colored

283813 entries

280 Mbytes

152 branches

I/O Performance
Analysis

Monitor TTree reads with TTreePerfStats

17 June 2010Rene Brun: ROOT developments 18

TFile *f = TFile::Open("xyz.root");

T = (TTree*)f->Get("MyTree");

TTreePerfStats ps("ioperf",T);

Long64_t n = T->GetEntries();

for (Long64_t i = 0;i < n; ++i) {

GetEntry(i);

DoSomething();

}

ps.SaveAs("perfstat.root");

Study TTreePerfStats

Visualizes read access:

x: tree entry

17 June 2010Rene Brun: ROOT developments 19

TFile f("perfstat.root");

ioperf->Draw();

ioperf->Print();

y: file offset
y: real time

See Doctor

17 June 201020Rene Brun: ROOT developments

Overlapping reads

10
0

 M
B

yt
e

s

17 June 201021Rene Brun: ROOT developments

After doctor

Old Real Time = 722s
New Real Time = 111s

gain a
factor 6.5 !!

The limitation is
now cpu time

17 June 201022Rene Brun: ROOT developments

Important factors

Local
Disk file

Remote
Disk file

Zipped buffer

Unzipped buffer
Unzipped buffer

Zipped buffer
Zipped buffer

Objects
in memory

17 June 201023Rene Brun: ROOT developments

17 June 2010Rene Brun: ROOT developments 24

A major problem: network latency

Client Server

Latency

Latency

Response Time

Round Trip Time (RTT)

=

2*Latency + Response Time

Runt Trip Time (RTT)

Client Process Time (CPT)

Client Process Time (CPT)

Client Process Time (CPT)

Total Time = 3 * [Client Process Time (CPT)] + 3*[Round Trip Time (RTT)]

Total Time = 3* (CPT) + 3 * (Response time) + 3 * (2 * Latency)

17 June 2010Rene Brun: ROOT developments 25

Idea (diagram)

Perform a big request instead of many small requests (only
possible if the future reads are known !!)

Client Server

Latency

Latency

Response Time

Client Process Time (CPT)

Total Time = 3* (CPT) + 3 * (Response time) + (2 * Latency)

readv
readv

readv
readv

readv

What is the TreeCache
It groups into one buffer all blocks from the used
branches.

The blocks are sorted in ascending order and
consecutive blocks merged such that the file is read
sequentially.

It reduces typically by a factor 10000 the number of
transactions with the disk and in particular the
network with servers like httpd, xrootd or dCache.

The typical size of the TreeCache is 30 Mbytes, but
higher values will always give better results.

17 June 201026Rene Brun: ROOT developments

readv
readv

readv
readv

readv

readv implementations

xrootd
TFile f1(“root://machine1.xx.yy/file1.root”)

dCache
TFile f2(“dcap://machine2.uu.vv/file2.root”)

httpd
TFile f3(http://something.nikhef.nl/file3.root);

uses a standard (eg apache2) web server

performance winner (but not many people know !)

17 June 2010Rene Brun: ROOT developments 27

I like it

http://myserver@nikhef.nl/file3.root

TTreeCache with LANs and WANs

17 June 2010Rene Brun: ROOT developments 28

client latency
(ms)

cachesize
0

cachesize
64k

cachesize
10 MB

A: local
pcbrun.cern.ch

0 3.4 s 3.4 3.3

B: 100Mb.s
CERN LAN

0.3 8.0 s 6.0 4.0

C: 10 Mb/s
CERN wireless

2 11.6 s 5.6 4.9

D: 100 Mb/s
Orsay

11 124.7 s 12.3 9.0

E: 100 Mb/s
Amsterdam

22 230.9 s 11.7 8.4

F: 8 Mb/s
ADSL home

72 743.7 s 48.3 28.0

G: 10 Gb/s
Caltech

240 2800 s 125.4 4.6 One query to a
280 MB Tree
I/O = 6.6 MB

old slide
from 2005

TreeCache results table
Cache size (MB) readcalls RT pcbrun4 (s) CP pcbrun4 (s) RT macbrun (s) CP macbrun (s)

0 1328586 734.6 270.5 618.6 169.8

LAN 1ms 0 1328586 734.6+1300 270.5 618.6+1300 169.8

10 24842 298.5 228.5 229.7 130.1

30 13885 272.1 215.9 183.0 126.9

200 6211 217.2 191.5 149.8 125.4

Cache size (MB) readcalls RT pcbrun4 (s) CP pcbrun4 (s) RT macbrun (s) CP macbrun (s)

0 15869 148.1 141.4 81.6 80.7

LAN 1ms 0 15869 148.1 + 16 141.4 81.6 + 16 80.7

10 714 157.9 142.4 93.4 82.5

30 600 165.7 148.8 97.0 82.5

200 552 154.0 137.6 98.1 82.0

Cache size (MB) readcalls RT pcbrun4 (s) CP pcbrun4 (s) RT macbrun (s) CP macbrun (s)

0 515350 381.8 216.3 326.2 127.0

LAN 1ms 0 515350 381.8 + 515 216.3 326.2 +515 127.0

10 15595 234.0 185.6 175.0 106.2

30 8717 216.5 182.6 144.4 104.5

200 2096 182.5 163.3 122.3 103.4

Reclust: OptimizeBaskets 30 MB (1086 MB), 9705 branches split=99

Reclust: OptimizeBaskets 30 MB (1147 MB), 203 branches split=0

Original Atlas file (1266 MB), 9705 branches split=99

17 June 201029Rene Brun: ROOT developments

TreeCache: new interface

Facts: Most users did not know if they were using or
not the TreeCache.

We decided to implement a simpler interface from
TTree itself (no need to know about the class
TTreeCache anymore).

Because some users claimed to use the TreeCache
and the results clearly showing the contrary, we
decided to implement a new IO monitoring class
TTreePerfStats.

17 June 201030Rene Brun: ROOT developments

TTreeCache

Sends a collection of read requests before analysis
needs the baskets

Must predict baskets:

learns from previous entries

takes TEntryList into account

Enabled per TTree

17 June 2010Rene Brun: ROOT developments 31

f = new TFile ("xyz.root");

T = (TTree*)f->Get("Events");

T->SetCacheSize(30000000);

T->AddBranchToCache("*");

What is the readahead cache
The readahead cache will read all non
consecutive blocks that are in the range of
the cache.

It minimizes the number of disk access. This
operation could in principle be done by the
OS, but the fact is that the OS parameters are
not tuned for many small reads, in particular
when many jobs read concurrently from the
same disk.

When using large values for the TreeCache or
when the baskets are well sorted by entry,
the readahead cache is not necessary.

Typical (default value) is 256 Kbytes, although
2 Mbytes seems to give better results on Atlas
files, but not with CMS or Alice.

17 June 201032Rene Brun: ROOT developments

Half Way
Much more ordered reads

Still lots of jumps because baskets spread across
file

17 June 2010Rene Brun: ROOT developments 33

OptimizeBaskets,
AutoFlush

Solution, enabled by default:

Tweak basket size!

Flush baskets at regular intervals!

17 June 201034Rene Brun: ROOT developments

OptimizeBaskets

Facts: Users do not tune the branch buffer size

Effect: branches for the same event are scattered in
the file.

TTree::OptimizeBaskets is a new function in 5.25 that
optimizes the buffer sizes taking into account the
population in each branch.

One can call this function on an existing read only
Tree file to see the diagnostics.

17 June 201035Rene Brun: ROOT developments

FlushBaskets

TTree::FlushBaskets was introduced in 5.22 but called only
once at the end of the filling process to disconnect the
buffers from the tree header.

In version 5.25/04 this function is called automatically
when a reasonable amount of data (default is 30 Mbytes)
has been written to the file.

The frequency to call TTree::FlushBaskets can be changed
by calling TTree::SetAutoFlush.

The first time that FlushBaskets is called, we also call
OptimizeBaskets.

17 June 201036Rene Brun: ROOT developments

FlushBaskets 2

The frequency at which FlushBaskets is called is
saved in the Tree (new member fAutoFlush).

This very important parameter is used when reading
to compute the best value for the TreeCache.

The TreeCache is set to a multiple of fAutoFlush.

Thanks to FlushBaskets there is no backward seeks
on the file for files written with 5.25/04. This makes a
dramatic improvement in the raw disk IO speed.

17 June 201037Rene Brun: ROOT developments

without FlushBaskets

17 June 2010Rene Brun: ROOT developments 38

Atlas file written
with 5.22 and read

with a 20 MB cache

with FlushBaskets

17 June 2010Rene Brun: ROOT developments 39

Atlas file written
with 5.26 and read
with a 20 MB cache

Similar pattern with CMS files

CMS : mainly CPU problem
due to a complex object

model

17 June 201040Rene Brun: ROOT developments

Use Case
reading 33 Mbytes out of 1100 MBytes

Old ATLAS file New ATLAS file

Seek time = 3186*5ms = 15.9s Seek time = 265*5ms = 1.3s

17 June 201041Rene Brun: ROOT developments

Use Case
reading 20% of the events

Even in this
difficult case

cache is
better

17 June 201042Rene Brun: ROOT developments

Caching a remote file

ROOT can write a local cache on demand of a remote
file. This feature is extensively used by the ROOT stress
suite that read many files from root.cern.ch

TFile f(http://root.cern.ch/files/CMS.root”,”cacheread”);

The CACHEREAD option opens an existing file for
reading through the file cache. If the download fails, it
will be opened remotely. The file will be downloaded to
the directory specified by SetCacheFileDir().

17 June 2010Rene Brun: ROOT developments 43

http://root.cern.ch/files/CMS.root%E2%80%9D,%E2%80%9Dcacheread

Caching the TreeCache

The TreeCache is mandatory when reading files in a LAN and
of course a WAN. It reduces by a factor 10000 the number of
network transactions.

One could think of a further optimization by keeping locally
the TreeCache for reuse in a following session.

A prototype implementation (by A.Peters) is currently being
tested and looks very promising.

A generalisation of this prototype to fetch treecache
buffers on proxy servers would be a huge step forward.

17 June 2010Rene Brun: ROOT developments 44

Caching the TreeCache

17 June 2010Rene Brun: ROOT developments 45

Local
disk or

memory file

10 MB zip

30 MB unzip

Remote
disk file

A.Peters cache
prototype

17 June 2010Rene Brun: ROOT developments 46

A.Peters cache prototype

17 June 2010Rene Brun: ROOT developments 47

A.Peters cache prototype

17 June 2010Rene Brun: ROOT developments 48

caching the TreeCache
Preliminary results

17 June 2010Rene Brun: ROOT developments 49

session Real Time(s) Cpu Time (s)

local 116 110

remote xrootd 123.7 117.1

with cache
(1st time)

142.4 120.1

with cache
(2nd time)

118.7 117.9

results on an Atlas AOD 1 GB file
with preliminary cache
from Andreas Peters

very
encouraging

results

other improvements

Code optimization to reduce the CPU time for IO

Use of memory pools to reduce malloc/free calls and
in particular memory fragmentation. The use of
memory pools could be extended automatically to
include user data structures, the main cause for
memory fragmentation.

working on parallel buffers merge, a very important
requirement for multi/many core systems

17 June 2010Rene Brun: ROOT developments 50

Parallel buffers merge

parallel job with 8 cores

each core produces a 1 GB
file in 100 seconds.

Then assuming that one can
read each file at 50MB/s and
write at 50 MB/s, merging
will take 8*20+160 = 320s !!

One can do the job in <160s

17 June 2010Rene Brun: ROOT developments 51

F
8

F
1

F
2

F
3

F
4

F
5

F
6

F
7

8 GB

1 GB

10 KB

Parallel buffers merge

17 June 2010Rene Brun: ROOT developments 52

F
8

F
1

F
2

F
3

F
4

F
5

F
6

F
7

8 GB

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

8 GB

1 GB 10 MB

10 KB
10 KB

Summary

After 15 years of developments, we are still making
substantial improvements in the IO system thanks to
the many use cases and a better understanding of the
chaotic user analysis.

We believe that file access in a WAN with local caches
and proxys is the way to go. This will have many
implications , including a big simplification of the
data management.

We are preparing the ground to make an efficient use
of many-core systems.

17 June 2010Rene Brun: ROOT developments 53

