
Back-end storage
- use as a true archive

Dirk Duellmann, CERN IT

WLCG Data & Storage Management Jamboree,

Amsterdam

16th June 2010

1

Wednesday, 16 June 2010

Outline
Back End Storage - some problems of current systems

System complexity -> Transparency (user), maintainability(service)

Scalability for analysis -> File access latency, client protocol & caches

Does the HSM model still help?

Benefits of possible conceptual and technology changes

Conceptual changes

Support for experiment defined file-sets

Independent data access and archive storage

Independent storage and transfer components

Archive mode vs random access tape

Technology changes

Tape archive and/or disk archive

Filesystems - what’s there? what’s missing?

In memory meta data for storage pools

2

Wednesday, 16 June 2010

HSM - Do we still use Model?

Hierarchical Storage Management (HSM) systems promise to hide the storage
hierarchy from its users.

Users see a simple file level (posix) interface

Data movements (disk->tape, tape->disk) are always done transparently and are
optimised in the large shared setup managed by the HSM system.

Is the HSM model still used / useful?

Production

Experiment work-flow system insure (pre-stage) dataset on disk

Disk-only pools play an important role

Analysis - also here HSM seems of limited utility

analysis input data must be on-disk, available volume is managed by physics
WGs

users often do not have access to tape at all (to insure tape resources for
production)

Over the last years we have largely given up on using the HSM mode.

we just use automatic archiving of new data to disk

Direct access to disk cache and archive components by experiment work-flow systems
would re-gain transparency.

3

Wednesday, 16 June 2010

Independent Storage and Transfer
Components

HSM approach has in some cases (eg CASTOR) resulted in a very tight coupling
between

Archive related meta-data (tape namespace)

Disk cache related meta-data (disk name space)

Transfer meta-data (state changes of data in flight)

This has led to difficulties to evolve the system

 work-flow meta-data is “polluting” the critical disk cache meta-data

data schema changes affect several functional components

Proposal:

focus on pure storage components (access & archive pools)

stat, put, get - plus posix access for the cache

transfer components maintain their work-flow meta-data internally

connect to storage pools via their external interface

would eg allow to create HSM pools from from basic storage pools

4

Wednesday, 16 June 2010

File Set Support
Current storage systems provide a convenient filename space to
experiments

but do not really aid several of their main work-flow primitives

change disk/tape state for a complete set of files

check if a file set is complete on-disk/on-tape/at-a-site

from the service perspective

file-set knowledge would help in more efficient dataset placement
on disk & tape

garbage collection on disk

File set concept would allow for more efficient support of
production workflows

5

Wednesday, 16 June 2010

File set Support - How? Where?

How to define file sets without breaking the end user API (posix)?

Experiment datasets are often collocated in the name space

eg the list of files in a given sub-directory, list of sub-dirs,

Would a directory based property be sufficient to define file sets in a
storage system?

File sets content often move together (eg archive->user disk, T0->T1)

 Atomic file-set movement and meta-data registration would increase
scalability and reliability significantly

Archive storage and transfer components may not require the knowledge
about the internal structure of a file-set

File-set placement on disk storage could exploit maximum spread of
member files across available disks to avoid contention for hot file-sets

 File sets get “closed” at some point after creation

individual file data and meta data stabilises

could be stored/recovered from self-describing archive media

Would the concept of closed file sets be acceptable for experiment users?

6

Wednesday, 16 June 2010

Archive vs Access Cache
Archive

few sequential, heavy streams

user file is not the best management entity

Access Cache / Disk Pools

many user connections,

high open and stat rates

large random I/O component

Low latency storage technologies for the mass market

Flash is there, phase-change memory is coming

Gap between archive and cache storage may broaden

Need to maintain independent archive and access components

allows to use new technologies once ready for production

7

Wednesday, 16 June 2010

Archive Media - Tape or Disk?
Another Disk Layer before Tape?
Starting point: long tape related access latencies

implies long, complex work-flow queue inside larger storage systems

fluctuation of request completion -> user transparency

often: a workflow DB -> operational effort, DBA support

Proposal: investigate disk based archives

exploit parallel and direct access to archived data on disk?

goals: reduced latency, simplify work-flow

focus on power & budget efficiency rather than performance

very different corner of the phase space wrt user access pools

disk archive demonstrator

economical feasibility (early model studies looked promising)

operational feasibility (test h/w lifecycle support, redundancy &
recovery)

prove work-flow simplification (eg throttling instead of scheduling)

8

Wednesday, 16 June 2010

Filesystems - At least two
Functional Roles

1) the “client protocol” used to access data (ideally as mount) on a WN

Should provide

support secure authentication (incl. X509, Kerberos)

client side data cache, support for vector reads

redirect clients in case one access path is unavailable

Examples: NFS4.1, XROOT/FUSE, AFS, {GPFS}

2) the software used to access/manage cluster storage

Should provide

high performance namespace, quota system

scalability in aggregate performance (eg file replication, striping)

support for online storage re-organisation

storage availability through media redundancy

Examples: GPFS, Lustre, AFS, XROOT

For the moment: no system can claim to implement both functional areas

but clustering storage is an attractive starting point for several T1 sites

9

Wednesday, 16 June 2010

File Systems as Clustered Storage

Used in different areas (-> site consolidation)

Core storage, software areas, home directories

Behind core storage systems: dCache, Xroot, DPM, {STORM}

no direct client access

Lustre and GPFS are successfully used

both lack direct X.509 support

both lack traceability of user I/O bandwidth

Lustre lacks support for online storage reconfiguration

Qs: commercial viability / long term futures / vendor lock-in

Questions to sites / storage development

How big is the gain in operational effort of using a clustered filesystem

if storage re-configurations require a service outage?

if an outside authentication/authorisation system is required?

How far do clustered file systems scale today in terms of volume and aggregate
experiment throughput?

How big are the savings in not having to develop/maintain a robust and
performant name space and clustering layer?

10

Wednesday, 16 June 2010

True Archive Mode
Storage setups consisting of separate cache and archive components
will only run effectively if

the active data to cache ratio is close to one

changes to the active set are covered by the available archive
bandwidth

Any temporary violation of the above means increased access
latency

longer term violation means overload and unavailability

Current systems can not reliably prevent the above to happen

Their shared nature makes it hard to isolate the origin of
additional ingest rate or changes in the active set

Operational teams and experiment teams are largely blind wrt
the impact of work-flow changes in another corner

11

Wednesday, 16 June 2010

How to get to Archive Mode
 There is no silver bullet to get closer to archive mode

need to jointly (sites + experiments) analyse key operational conditions

cache efficiency vs active data sets

top consumers of archive bandwidth

Provide experiment management the necessary input to spot and throttle
overcommitment at the source

Proactively manage the main data flows in the system

Agree, document and monitor their rates and latency to archive

Agree on max rate for lambda users (if any!)

As long planning discussions are about global disk and tape volumes we
will achieve stable conditions only via over-provisioning

This works too, but given a fixed budget I’d expect a genuine interest
of experiments in this activity

Need to close the loop between storage providers and experiments storage
managers at least for the main data flows

12

Wednesday, 16 June 2010

