
Transfer and Cataloguing

Gavin McCance

Simone Campana

Roberto Santinelli

Andrea Sciaba

Evolution of WLCG Data and 
Storage Management Workshop

Amsterdam
17 June 2010



Outline

 Few slides as input for discussion

 While I‟ll probably talk in terms of the 
FTS and LFC software (and I can‟t 
resist) really the discussion is about 
the architecture

 Transfer first then cataloguing



FTS – the software

 Ex. the odd spectacular bug it‟s rather 
stable and boring

 Core concept of the channel (point to 
point link) as the “thing you manage” 
was simple

 Come from MONARC – manage network

 Deploy at T0 and T1s only

 But…



FTS issues / lessons

 Channel multiplicity horror

 Affects operations – configuration

 Conceptually cumbersome to manage many point-point 
links in an any-to-any world

 STAR channel constipation, group channels hard to 
configure

 Non-communicating FTS server instances

 Overload: A T1‟s FTS can control write but not read

 You need to know which one to submit to

 No magic: you need to know where your files are

 FTS | SRM interface too loosely coupled

 Really hard for ops to debug and trace the whole stack

 No real back-pressure – afterthought of 
“SRM_RATHER_BUSY” was an afterthought

 Easy to overload storage



Transfer architecture discussion

 No solutions: food for discussion

 Abandon fixed channel concept and include storage bandwidth

 Still the need to control the networking bandwidth used for T2/T2

 Easy to say (it‟s an n x n matrix)

 Some possible solutions need to be prototyped (the global 
omniscient beast vs. back-pressure). Simulate?

 Submit anywhere – use standard MQ to glue it

 Move away from a model where you have to know – if replica 1 is 
not available, get the file over there

 Move scheduled WAN transfer functions closer to storage?

 Help with operations

 Is the “file” as the data management primitive correct? Sets or 
chunks (with „getNext‟ iterator) might help the storage balance 
better



LFC – the software

 Secure namespace to tell you where the replicas are

 Absolutely stable and boring

 Used in both global, cloud and local (tier-2) mode for 
many VOs both large and small
 Can be replicated for availability

 Lessons learned from LFC

 Bulk operations were clearly needed

 Strong desire now for standard http-based access

 Some unforeseen „admin‟ operations

 e.g. rename storage element

 Would have been nicer to allow more experiment 
specific metadata – external joins are still a pain



Cataloguing

 Apart from specifics on any product…

 …consistency with storage and 
between catalogues is the main 
challenge



Cataloguing consistency

 Current consistency model is not resilient to failures

 Storage failures lead to dangling entries to be cleaned up 
manually. Catalogue failures lead to orphaned files.

 Namespace scanning for diffs is expensive (srmLs „abuse‟)

 Multiplicity of catalogues – experiment book-keeping, {global, 
cloud, local} replica catalogues, storage catalogues

 [advert] proposed demonstrator to use reliable message 
(i.e. industry standard MQ) as backbone of the reliability
 All interested catalogues can „subscribe‟ for new files / deleted files

 Eventual consistency model

 Add GUIDs to storage catalogs to remove the need for local 
file catalogue
 Lost files can be broadcast on the “lost” topic to interested catalogues

 Also for corrupted “bad” files (not readable, no GUID)



Summary

 FTS and LFC function as intended at ~WLCG scale

 The conceptual model of WLCG‟s transfer system is too 
simple

 Need to consider storage bandwidth as well as network

 But global n x n optimisation is hard

 A global system would allow more magic (strawman)

 FTS | SRM interface is too loosely coupled

 Is the “file” the correct primitive for unordered bulk 
operations?

 Consistency is the key challenge for cataloguing

 Add GUIDs to storage catalogue

 Use industry standard messaging a backbone of reliability 
and storage / catalogue integration


