
Transfer and Cataloguing

Gavin McCance

Simone Campana

Roberto Santinelli

Andrea Sciaba

Evolution of WLCG Data and 
Storage Management Workshop

Amsterdam
17 June 2010



Outline

 Few slides as input for discussion

 While I‟ll probably talk in terms of the 
FTS and LFC software (and I can‟t 
resist) really the discussion is about 
the architecture

 Transfer first then cataloguing



FTS – the software

 Ex. the odd spectacular bug it‟s rather 
stable and boring

 Core concept of the channel (point to 
point link) as the “thing you manage” 
was simple

 Come from MONARC – manage network

 Deploy at T0 and T1s only

 But…



FTS issues / lessons

 Channel multiplicity horror

 Affects operations – configuration

 Conceptually cumbersome to manage many point-point 
links in an any-to-any world

 STAR channel constipation, group channels hard to 
configure

 Non-communicating FTS server instances

 Overload: A T1‟s FTS can control write but not read

 You need to know which one to submit to

 No magic: you need to know where your files are

 FTS | SRM interface too loosely coupled

 Really hard for ops to debug and trace the whole stack

 No real back-pressure – afterthought of 
“SRM_RATHER_BUSY” was an afterthought

 Easy to overload storage



Transfer architecture discussion

 No solutions: food for discussion

 Abandon fixed channel concept and include storage bandwidth

 Still the need to control the networking bandwidth used for T2/T2

 Easy to say (it‟s an n x n matrix)

 Some possible solutions need to be prototyped (the global 
omniscient beast vs. back-pressure). Simulate?

 Submit anywhere – use standard MQ to glue it

 Move away from a model where you have to know – if replica 1 is 
not available, get the file over there

 Move scheduled WAN transfer functions closer to storage?

 Help with operations

 Is the “file” as the data management primitive correct? Sets or 
chunks (with „getNext‟ iterator) might help the storage balance 
better



LFC – the software

 Secure namespace to tell you where the replicas are

 Absolutely stable and boring

 Used in both global, cloud and local (tier-2) mode for 
many VOs both large and small
 Can be replicated for availability

 Lessons learned from LFC

 Bulk operations were clearly needed

 Strong desire now for standard http-based access

 Some unforeseen „admin‟ operations

 e.g. rename storage element

 Would have been nicer to allow more experiment 
specific metadata – external joins are still a pain



Cataloguing

 Apart from specifics on any product…

 …consistency with storage and 
between catalogues is the main 
challenge



Cataloguing consistency

 Current consistency model is not resilient to failures

 Storage failures lead to dangling entries to be cleaned up 
manually. Catalogue failures lead to orphaned files.

 Namespace scanning for diffs is expensive (srmLs „abuse‟)

 Multiplicity of catalogues – experiment book-keeping, {global, 
cloud, local} replica catalogues, storage catalogues

 [advert] proposed demonstrator to use reliable message 
(i.e. industry standard MQ) as backbone of the reliability
 All interested catalogues can „subscribe‟ for new files / deleted files

 Eventual consistency model

 Add GUIDs to storage catalogs to remove the need for local 
file catalogue
 Lost files can be broadcast on the “lost” topic to interested catalogues

 Also for corrupted “bad” files (not readable, no GUID)



Summary

 FTS and LFC function as intended at ~WLCG scale

 The conceptual model of WLCG‟s transfer system is too 
simple

 Need to consider storage bandwidth as well as network

 But global n x n optimisation is hard

 A global system would allow more magic (strawman)

 FTS | SRM interface is too loosely coupled

 Is the “file” the correct primitive for unordered bulk 
operations?

 Consistency is the key challenge for cataloguing

 Add GUIDs to storage catalogue

 Use industry standard messaging a backbone of reliability 
and storage / catalogue integration


