Neutrino Astrophysics

[core-collapse supernova detection as a possible application for Fast Machine Learning]

Kate Scholberg, Duke University
Fast Machine Learning for Science Workshop
December 2, 2020

I am not a fast machine learning expert ...

(have dabbled a little on the slow side)

Will instead describe a possible "scientific domain application" for FastML

Quarks

Forces

Neutrinos are famously weakly interacting fundamental particles in the Standard Model

We care about them for many reasons...

fundamental particles and interactions

astrophysical systems

cosmology

nuclear physics

We care about them for many reasons...

fundamental particles and interactions

They are astrophysical messengers... astrophysics and particle physics

cosmology

nuclear physics

The Steady State Neutrino Spectrum @ Earth

Grand Unified Neutrino Spectrum at Earth

Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205

e-Print: arXiv:1910.11878 [astro-ph.HE] I PDF

Neutrinos arrive as transient sources also

When a star's core collapses, ~99% of the gravitational binding energy of the proto-neutron star remnant goes in neutrinos of all flavors, over a timescale of tens of seconds

The Steady State Neutrino Spectrum @ Earth

Grand Unified Neutrino Spectrum at Earth

Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205

e-Print: arXiv:1910.11878 [astro-ph.HE] I PDF

During a ~10s Galactic burst, neutrino flux can increase 9-10 orders of magnitude

Grand Unified Neutrino Spectrum at Earth

Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205

e-Print: arXiv:1910.11878 [astro-ph.HE] I PDF

I will zoom in on this core-collapse signal....

Such a neutrino burst heralds (in most cases) a **supernova**:

For a while, as luminous (in photons) as a galaxy*!

A star self-destructs a few times per century, per galaxy

Multimessenger core-collapse SN signals

What can we learn from the next neutrino burst?

explosion mechanism proto nstar cooling, quark matter black hole formation accretion, SASI nucleosynthesis

• • • •

input from photon (GW) observations

from flavor, energy, time structure of burst input from neutrino experiments

NEUTRINO and OTHER PARTICLE PHYSICS

v absolute mass (not competitive)
v mixing from spectra:
flavor conversion in SN/Earth
(mass hierarchy)
other v properties: sterile v's,
magnetic moment,...
axions, extra dimensions,
FCNC, ...

+ EARLY ALERT

Supernova 1987A in the Large Magellanic Cloud (55 kpc away)

~two dozen neutrino interactions observed!

SN1987A in LMC

v's seen ~2.5 hours before first light

Confirmed baseline model... but still many questions

How do we detect the SN burst neutrinos?

Need large detectors
(~1 kton per ~100 v interactions for SN @ Galactic center),
typically underground
(to shield from cosmic rays)

Neutrinos interact with electrons or nuclei; energy loss of resulting created or kicked charged particles is collected and digitized

Current main supernova neutrino detector types

Future Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 374 kton water Japan

DUNE 40 kton argon USA

JUNO 20 kton scintillator (hydrocarbon) China

The Supernova Early Warning System

Nature Reviews

Current configuration: future will have more!

Can the neutrinos point to the supernova? Find the supernova!

Early light observations are valuable....

We're racing the shock!

May have less than a half hour, or even just minutes

Matthew D. Kistler, W. C. Haxton, and Hasan Yüksel. Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout. ApJ, 778:81, 2013, arXiv:1211.6770.

For this application, want to point with *low latency*

SNEWS Alert Latency

From A. Habig, M. Strait

arXiv: 2011.00035

(will improve with SNEWS 2.0)

Now, the example where FastML may help!

Methods for Pointing Using Neutrinos

Anisotropic neutrino interactions
combined with detector technology that can exploit it,
using the burst neutrino signal
Triangulation
using inter-detector timing
Oscillation pattern pointing
in high-energy resolution detectors
High-energy (~GeV) neutrino follow-on pointing
in directional detectors, using later neutrinos
All of the above!

Neutrino Pointing Methods

□ Anisotropic neutrino interactions
 combined with detector technology that can exploit it,
 using the burst neutrino signal
 □ Triangulation
 using inter-detector timing
 □ Oscillation pattern pointing
 in high-energy resolution detectors
 □ High-energy (~GeV) neutrino follow-on pointing
 in directional detectors, using later neutrinos
 □ All of the above!

Final-state particle may remember the neutrino direction... detector must be able to exploit the directionality!

Water Cherenkov Detectors

Excellent intrinsic directionality, including head-tail disambiguation

Should work well in Super-K (few degrees for Galactic center)

Liquid Argon Time Projection Chambers

- Fine-grained tracking of final-state particles
- Machine learning (not "fast")has been used for neutrino event classification in LArTPCs, e.g.
 - MicroBooNE: <u>arXiv:2011.01375v1</u>
 - DUNE: 10.1103/PhysRevD.102.092003, https://zenodo.org/record/4122909#.X8e2My9h3s0

DUNE (Deep Underground Neutrino Experiment)

- neutrino oscillations w/beam from Fermilab
- supernova burst neutrinos
- proton decay

. . .

Pointing to the supernova with LArTPCs

10.25 MeV electron

Tracks can be reconstructed, but note direction ambiguity, unlike Cherenkov!

... but can resolve statistically using bremsstrahlung directionality and multiple scattering

Pointing to the supernova with DUNE

68% Angle vs Neutrino Energy

Making use of interactions on both Ar and electrons:

Maximum likelihood method

Overall pointing using an ensemble of events from a ~10 kpc supernova → ~7.5° ...improvements still possible

So decent pointing in DUNE is possible ... but this study is for offline processing of selected events ... needs to be *fast!*

Slide from Georgia Karagiorgi:

DUNE's Data (Selection) Challenge

High-resolution "video" streams:

- from up to 4x150 independent detector volumes
- 11.5 megapixel frames (all 3 planes) per 2.25ms
- 12-bit resolution

A total of ~40 terabits per second

100% live time continuous operation for more than a decade

Real-time data selection is a challenge...

Slide from Georgia Karagiorgi:

Deep Underground = "quiet" environment

Single frame from high-resolution video: One of three 2D views from one of hundreds of cells in the detector

"Static" is noise and small energy deposits from radiological impurities in the detector

16

Slide from Georgia Karagiorgi:

E.g., Convolutional Neural Networks (CNNs)* could be applied for real-time image classification, using hardware acceleration (FPGA), or online in GPU or CPU.

can address directional reconstruction too the construction to the construction

To recap: the supernova burst problem (not just DUNE) is:

- 1. Trigger on the supernova burst (easy, maybe...)
- 2. Swallow all the data (save everything! also doable)
- ... all this so far can be done for leisurely later perusal and sophisticated event reconstruction, but the shock isn't going to wait! So next steps must be done fast:
- 3. Select the neutrino events from background
- 4. Reconstruct the direction to the supernova using the ensemble of selected events

challenge! where FastML can help

Summary

- Neutrinos bring unique information from astrophysical objects (particle physics & astrophysics)
- Core-collapse supernovae create intense, few-tens-of-second, few-tens-of-MeV neutrino bursts, a few times per century in the Milky Way the next one will be a multimessenger extravaganza
- The neutrinos emerge before the photons, so an early alert is possible; delays can be days, or just minutes
- Detectors around the world are sensitive to the burst
- The SuperNova Early Warning System will provide a low-latency alert
- Some detectors can use the neutrinos to point to the SN
- Fast selection of the burst neutrinos and reconstruction of the SN direction is a challenge that FastML can address