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Overview

- Overview of ML methods used in accelerator-based neutrino
experiments.

NOVA
DUNE

- Short-Baseline Neutrino (SBN) Program

-+ Summarise tools currently in use, as well as new technigques being
developed.

Much of what this talk covers is not really “Fast ML.”

Most ML applications in neutrino physics are offline reconstruction.

Hopefully highlight some deficiencies in current workflows.
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NOVA experiment

NOVA is a long-baseline accelerator experiment based at
Fermilab.

Measures neutrinos from Fermilab’s NuMI beam.
Functionally identical near and far detectors.

Plastic and liquid scintillator sampling tracking
calorimeter.

ND: 1km baseline, FNAL, 300 tons.

FD: 810km baseline, Ash River, 14 kt, 14 mrad off-axis.

Charged particles produce J@
light when propagating =
through scintillator. 1

Picked up by wavelength-
shifting fibers (right) and

amplified by avalanche \u'
photodiodes (left).

Detector
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NOVA physics
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NOvVA’s ability to measure neutrino oscillations relies on an ability to disambiguate
different neutrino interaction types.

Measuring oscillation parameters requires pure charged-current (CC) v, and v,
samples, and robust rejection of neutral-current (NC) and cosmic events.
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NOVA CVN

NOVA utilises a CNN neutrino interaction classifier
called the Convolutional Visual Network (CVN).

Segmented detector provides top-down and
side-on views of an interaction.

L ower-level reconstruction identifies neutrino
interaction candidates, and selects a region of
iInterest around each interaction.

Train CNN to disambiguate CC v, & 1, interactions
from NG and cosmic interactions.

Use a modified MobileNet v2 architecture which
operates independently on the two views, then
merges them before a final set of layers.

arXiv:1604.01444
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NOvVA CVN

arXiv:1604.01444

NOVA utilises a CNN neutrino interaction classifier
called the Convolutional Visual Network (CVN).

Segmented detector provides top-down and
side-on views of an interaction.

L ower-level reconstruction identifies neutrino
interaction candidates, and selects a region of
iInterest around each interaction.

Train CNN to disambiguate CC v, & 1, interactions
from NG and cosmic interactions.

Use a modified MobileNet v2 architecture which
operates independently on the two views, then
merges them before a final set of layers.

Convolution Convolution
5x5 stride 2 5x5 stride 2
32 filters 32 filters

Bottleneck Block Bottleneck Block
16 filters x1 16 filters x1

Average Pooling Average Pooling
2x2 2x2

Bottleneck Block
24 filters X2

Bottleneck Block

24 filters x2

Elementwise
Maximum Pooling
1x1 Convolution

Average Pooling 6X expansion
2x2

Depth-wise
3x3 Convolution

. 1x1 Convolution
Average Pooling

2x2

Bottleneck Filters

Bottleneck Block
48 filters x4

Bottleneck Block
64 filters x3

Average Pooling

2x2

Bottleneck Block
96 filters x3

Bottleneck Block
160 filters x1

Global Average
Pooling

Dense Layer
1024 Units

Dense Layer
4 Units
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CVN

Particle Classification
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- CVN extension developed which operates on each particle cluster independently.

- Select individual clusters within interaction, and feed them into CVN for particle type
classification.

arXiv:1906.00713
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CVN Particle Classification

CVN extension developed which operates on each particle cluster independently.

Select individual clusters within interaction, and feed them into CVN for particle type
classification.

Constructing a four-stack network including the full event for context improves network
performance. - - -
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CVN Particle Classification

- CVN extension developed which operates on each particle cluster independently.

- Select individual clusters within interaction, and feed them into CVN for particle type
classification.

- Constructing a four-stack network including the full event for context improves network
performance.

. L. . . . L B i e e T T LI e e e e
Color is efficiency NOVA Simulation 1 T
' oher | T TIvae Other
0.8- =+NoContext L~ ""&Tpe = «No Context ]
photon4 0.06 0.00
oy h
2 0.6;
.g . Muon Proton
= Other Other Other
W 0.4+ ==No Context = = No Context =« No Context
pion
— 0.2+
(]
Ke]
©
—
©
© proton -
4
9]
5 T Trrr1 T
g - 0.4
o
0.8
muon - >
[}
c
.g 0.6f
0.2 = Muon Classifier Proton Classifier
w = With Context — With Context = With Context = With Context — With Context
‘_é 0.4 - = No Context 1 - - No Context 1 = «No Context + =« No Context + --No Context
electron 0.00 0.01 0.01 0.10 Ug;
0.2¢
T T T T . 00
electron muon proton pion phOton MEPEPN EPRPEPEN EPRPENS IPRPIPE EPENUP ERPUIN ENRPRFES FRPETI SR ANAPETS IPRPEPEN VRPN SNUPEPE AFUVEPE APEPETS (PN APUVEPEN APUPENT RV APETETE EPRPENTS PUPETI SPETETEN ENRPETE PR
True Label 02 04 06 038 02 04 06 08 02 04 0.6 08 02 04 0.6 0.8 02 04 06 0.8
Background Efficiency Background Efficiency Background Efficiency Background Efficiency Background Efficiency

arXiv:1906.00713 Machine Learning in Accelerator-Based Neutrinos — J Hewes — 2nd December 2020 10



@ CINCINNAT
Cosmic rejection CNN

- NOVA’s far detector is on the surface, so sees
an enormous flux of cosmic interactions.

- Many TBs of cosmic data recorded
annually.

- Many 550us readout windows are fully
processed and reconstructed, despite being

NOvA - FNAL E929

easy -to reJ eC-t . Run: 18620113 é“"".‘ %,.,L,L,JJ-.w.?..J.u_,,ma;;.@\.‘,4‘.:4;%,;uj,,..-‘_u ‘\ -
uTC 9,2015 s = e =5 o e 1l
00:13. 7341608 i - 10

00
L(psec)

- CNN classifier trained to identify and reject
readout windows without interesting physics.

- Weed out easy-to-remove backgrounds
without sacrificing any potential signal.

- Not run online, but in early stages of keep-
up data processing to reduce computing
cost of downstream reconstruction.
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Training and inference in NOVA

- CNN training typically occurs on GPU clusters such as Fermilab’s
Wilson Cluster, outside of typical analysis framework.

NOVA’'s analysis tools utilise a “Common Analysis Framework (CAF).”

Recent developments allow for simple translation of CAF files into
HDF5 format, greatly streamlining the training procedure.

- Simulation and reconstruction are performed in the Art framework
(heavy-duty, C++).

nference is run event-by-event on CPU in Tensorflow via C++.

_ogistically the simplest solution, but also extremely slow.

- More sophisticated pipelines could greatly streamline this process.
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Liquid Argon TPCs

Liquid Argon Time Projection Chambers (LArTPCs) are currently a very
important detector technology for neutrino physics.

- At FNAL: MicroBooNE, Icarus, SBND.
Future: DUNE (7OKT LArTPC deep underground, plus near detector).

Charged particles ionize liquid
argon as they travel.

lonisation electrons drift due to
HV electrode field, and are
collected by anode wires.

- Wire spacing ~3mm — produce
high-resolution images.
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Standard reconstruction chain
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Raw TPC output is wire waveforms.
Waveforms are then deconvolved and hit-finding is applied to produce Gaussian hits.
Each wire plane forms a 2D image in the space of wire vs readout time.

Three wire planes angled at -36°, 0°, 36° provide three 2D representations of the
event.

These 2D representations can be used to construct a 3D representation of the event.
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Deep Underground Neutrino Experiment

) 70 kt LArTPC; 1'5km underground Long-Baseline Neutrino Facility

South Dakota Site Neutrinos from
Fermi National

Accelerator Laboratory
in lllinois

* High exposure in low-background
environment.

* Modular design:

Facility
and cryogenic
support systems

* Four large detector modules.
* Each consists of 200 individual TPCs.

One of four
detector modules of the
Deep Underground
Neutrino Experiment

* Transformations necessary to combine Sanor Underground
data across multiple modules in 2D.

Sanford Underground

Research Facility Fermilab

e ———————
- -~
__r_‘-" ~
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Machine Learning in DUNE

- Liquid Argon Time Projection Chambers (LArTPCs) provide extremely rich and
detailed information due to their high resolution.

- Taking full advantage of this information requires sophisticated event
reconstruction techniques.

- Machine learning is increasingly being adopted due to its ability to outperform
traditional methods:

- CNNs for event ID.
- 3D CNNs for pixel and instance segmentation.

- Graph neural networks (GNNSs) for both high- and low-level reconstruction.

- DUNE’s modular Pandora reconstruction framework beginning to explore ML-
based reconstruction modules.
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DUN

Neutrino osclllations at

- Neutrino oscillation measurements at DUNE will be performed using similar techniques
to those previously discussed for NOVA.

High-power beam, high-resolution LArTPC detectors and large detector mass will
allow neutrinos to be collected with much larger statistics.

- Current sensitivities are produced using simulated fluxes & cross-sections paired with
parameterised reconstruction assumptions.

Current baseline method is CVN trained on fully simulated DUNE neutrino interactions.
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DUNE CVN

Implementation is the same as NOVA:

Perform low-level reconstruction (wire deconvolution, hit finding).

Identify a region of interest, and produce pixel map inputs.

- Stitch together pixel maps across multiple TPC modules.

- Train to classify neutrino flavour (no cosmics due to DUNE’s depth).

Time

DUNE Simulation

Wire

Charge

(a) 1.6 GeV CC v,. (b) 2.2GeV NC 17, (c) 2.4GeV NC 17°.

arXiV: 2006.15052
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DUNE CVN
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FIG. 4: Simplified diagram of the DUNE CVN architecture.
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DUNE sensitivity

Mass Ordering Sensitivity CP Violation Sensitivity
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DUNE’s sensitivity to primary physics goals (CP violation, mass ordering) is
based on efficiencies and purities achieved by CVN.

CVN performance surpasses previous assumptions about event [ID
capabillities.
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ML triggering at
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DUNE is a stable large-mass detector in a low
background environment.

Besides neutrino physics, DUNE is well-suited for a
range of rare searches:

Supernova neutrinos
Proton decay
n — n oscillation
..etc
Studies into using ML for triggering have shown
some promise, and FPGA studies show

improvements in inference speed (x1.7) and energy
efficiency (x2.6) over CPUs (see more here).

22


http://www.cs.columbia.edu/~luca/research/jwa_NYSDS19.pdf

@ cINCINNAT

Sparse Convolutions

- Many CNN applications in neutrino physics are locally dense but globally sparse.

- Classifying these dense pixel maps involves many computations wasted multiplying your model
weights by 0.

- Solution: Use sparse convolutions to only operate on interesting regions.
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Sparse Convolutions

Facebook’s SparseConvNet and later NVIDIA’s (formerly Stanford’s)
MinkowskiEngine are PyTlorch packages which implement sparse convolutions.

Only perform convolution if the pixel at the centre of the receptive field is non-zero.
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Sparse Convolutions

First paper investigating sparse CNNs o
within neutrino physics demonstrated
significant improvements in inference time
and memory usage for a MicroBooNE-
equivalent detector.
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Detector region can be arbitrarily large 2
Sparse CNN approaches are being % 2
developed across the SBN and DUNE
Near Detector by SLAC, and in NOvA and e
ProtoDUNE by University of Cincinnati. Batch size

arXiv:1903.05663
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3D CNN reconstruction

“Ghost” points
removed by
network

Cluster3D
SpacePoints

SLAC LArTPC reconstruction tools utilise 3D sparse
CNNs to remove ghost voxels, and classify particle

type.

Instance segmentation to group voxels together
iNnto objects.

Disparate EM shower fragments grouped using a
GNN.

Second GNN layer to group together objects into
interactions.

@ cINCINNAT

Particle type &3
predicted by the
network

Shower primary ! L

predictions j -
. ’ \

Interaction preds
in a 2 v-like event

Connecting the Dots 2020
F. Drielsma
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True label
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Sparse 3D CNN for voxel segmentation also developed for ProtoDUNE.
- Test beam prototype for DUNE far detector at CERN.
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Graph neural networks

Describe information structure as a graph represented by and edges.

are generalised as
guantised objects with some

— arbitrary set of features.
- Edges describe the
/ relationships between nodes.
- Perform convolutions on nodes
— and edges to learn relationships

within the graph.
- Qutput is user-defined:
- Classify nodes or edges.
- Classify full graph.

- Regression outputs.
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arXiv:1810.06111

Promising results from the Exa.TrkX collaboration using GNN methods for track
reconstruction in the HL-LHC.

Adapting these methods for 2D reconstruction in the DUNE far detector.

CNN-based methods perform well, but require transformation of 3D point cloud
into a grid.

Graph-based techniques can operate on the data in its native structure.
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GNNs in DUN

Developing GNNs for particle reconstruction in .
2D using simulated CCQE beam neutrino %
interactions. "%,
\‘9
Few-GeV energy. Y
‘\e)‘
Neutrinos travel along beam direction. °°
Nucleus

- Typically “clean” interactions — primary lepton
(e,uy) and minimal hadronic activity.

- Train multihead attention message-passing
network to classify relationships between
detector hits.

Determine whether the hits were created by
the same particle — and if so, whether that
particle is an EM shower, py or hadronic.
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True label

GNNs in DUNE

@ cINCINNAT

- Current iteration achieves 84% accuracy in classifying graph edges.

- Exploring further graph-based approaches.

muon hadronic

shower

false
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- 0.7

hadronic, muon, shower,

false shower muon hadronic
Assigned label
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Summary

- Accelerator neutrino physics seeing increasingly widespread ML use.

NOvVA, SBN, DUNE, Minerva (not mentioned herel)

- At this point, ML applications in accelerator neutrino physics are mostly offline.
Reconstruction tools after data has already been collected.

- Some lower-level ML applications for raw data/triggering are being explored.

Personal opinion: even in places where techniques are mature, integration
between ML and analysis tools could be improved.

- CPU inference.

- Training environments separate from sim/reco/analysis ecosystem.
Process streamlined in NOvA with HDF5 integration.

- Active work in FermiGrid, HPC to improve this!
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Neutrino osclillations

Ve Uel Ueg Ueg 1 PMNS
Vy | = U,ul U,u2 U,uS 1% matrix
Vr UTl UTQ UTB V3

2
AmjiL

P(ve =+ ) = S Vsl + Y Uil
V£

5
Ve 1 C13 s13€e’ Cl2 812 V1
v, | = C23  S23 1 —S12 €12 Vo
5
Vr —S23 (23 —S13€" C13 1 V3

Sij — sin Hij, Ci; — COS 97;3'

Machine Learning in Accelerator-Based Neutrinos — J Hewes — 2nd December 2020 34



, iy University of
@ CINCINNAT
Neutrino oscillations
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