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Overview

• Overview of ML methods used in accelerator-based neutrino 
experiments. 
• NOvA 
• DUNE 
• Short-Baseline Neutrino (SBN) Program 

• Summarise tools currently in use, as well as new techniques being 
developed. 
• Much of what this talk covers is not really “Fast ML.” 
• Most ML applications in neutrino physics are offline reconstruction. 
• Hopefully highlight some deficiencies in current workflows.
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NOvA experiment
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• NOvA is a long-baseline accelerator experiment based at 
Fermilab. 

• Measures neutrinos from Fermilab’s NuMI beam. 

• Functionally identical near and far detectors. 

• Plastic and liquid scintillator sampling tracking 
calorimeter. 

• ND: 1km baseline, FNAL, 300 tons. 

• FD: 810km baseline, Ash River, 14 kt, 14 mrad off-axis.

• Charged particles produce 
light when propagating 
through scintillator. 

• Picked up by wavelength-
shifting fibers (right) and 
amplified by avalanche 
photodiodes (left).
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NOvA physics
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• NOvA’s ability to measure neutrino oscillations relies on an ability to disambiguate 
different neutrino interaction types. 

• Measuring oscillation parameters requires pure charged-current (CC)  and  
samples, and robust rejection of neutral-current (NC) and cosmic events.
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NOvA CVN

• NOvA utilises a CNN neutrino interaction classifier 
called the Convolutional Visual Network (CVN). 

• Segmented detector provides top-down and 
side-on views of an interaction. 

• Lower-level reconstruction identifies neutrino 
interaction candidates, and selects a region of 
interest around each interaction. 

• Train CNN to disambiguate CC  &  interactions 
from NC and cosmic interactions. 

• Use a modified MobileNet v2 architecture which 
operates independently on the two views, then 
merges them before a final set of layers.

νμ νe

6arXiv:1604.01444



Machine Learning in Accelerator-Based Neutrinos – J Hewes – 2nd December 2020

NOvA CVN

• NOvA utilises a CNN neutrino interaction classifier 
called the Convolutional Visual Network (CVN). 

• Segmented detector provides top-down and 
side-on views of an interaction. 

• Lower-level reconstruction identifies neutrino 
interaction candidates, and selects a region of 
interest around each interaction. 

• Train CNN to disambiguate CC  &  interactions 
from NC and cosmic interactions. 

• Use a modified MobileNet v2 architecture which 
operates independently on the two views, then 
merges them before a final set of layers.

νμ νe

7

CRQYROXWiRQ
5[5 VWUide 2

32 ÀOWeUV

CRQYROXWiRQ
5[5 VWUide 2

32 ÀOWeUV

BRWWOeQeck BORck
16 ÀOWeUV

BRWWOeQeck BORck
16 ÀOWeUV

AYeUage PRROiQg
2[2

AYeUage PRROiQg
2[2

BRWWOeQeck BORck
24 ÀOWeUV

BRWWOeQeck BORck
24 ÀOWeUV

EOePeQWZiVe
Ma[iPXP PRROiQg

AYeUage PRROiQg
2[2

BRWWOeQeck BORck
32 ÀOWeUV

BRWWOeQeck BORck
48 ÀOWeUV

AYeUage PRROiQg
2[2

BRWWOeQeck BORck
64 ÀOWeUV

BRWWOeQeck BORck
96 ÀOWeUV

AYeUage PRROiQg
2[2

BRWWOeQeck BORck
160 ÀOWeUV

GORbaO AYeUage
PRROiQg

DeQVe La\eU
1024 UQiWV

DeQVe La\eU
4 UQiWV

[1

1[1 CRQYROXWiRQ
6[ e[SaQViRQ

DeSWh-ZiVe
¬3[3 CRQYROXWiRQ

1[1 CRQYROXWiRQ
BRWWOeQeck FiOWeUV

+

STXee]e-E[ciWe
BORck

[1

[2 [2

[3

[4

[3

[3

[1

arXiv:1604.01444



Machine Learning in Accelerator-Based Neutrinos – J Hewes – 2nd December 2020

CVN Particle Classification

• CVN extension developed which operates on each particle cluster independently. 
• Select individual clusters within interaction, and feed them into CVN for particle type 

classification. 
• Constructing a four-stack network including the full event for context improves network 

performance.

8arXiv:1906.00713
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Cosmic rejection CNN
• NOvA’s far detector is on the surface, so sees 

an enormous flux of cosmic interactions. 
• Many TBs of cosmic data recorded 

annually. 

• Many 550μs readout windows are fully 
processed and reconstructed, despite being 
easy to reject. 

• CNN classifier trained to identify and reject 
readout windows without interesting physics. 
• Weed out easy-to-remove backgrounds 

without sacrificing any potential signal. 
• Not run online, but in early stages of keep-

up data processing to reduce computing 
cost of downstream reconstruction.
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Training and inference in NOvA

• CNN training typically occurs on GPU clusters such as Fermilab’s 
Wilson Cluster, outside of typical analysis framework. 

• NOvA’s analysis tools utilise a “Common Analysis Framework (CAF).” 
• Recent developments allow for simple translation of CAF files into 

HDF5 format, greatly streamlining the training procedure. 

• Simulation and reconstruction are performed in the Art framework 
(heavy-duty, C++). 
• Inference is run event-by-event on CPU in Tensorflow via C++. 
• Logistically the simplest solution, but also extremely slow. 
• More sophisticated pipelines could greatly streamline this process.

12
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Liquid Argon TPCs
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• Liquid Argon Time Projection Chambers (LArTPCs) are currently a very 
important detector technology for neutrino physics. 
• At FNAL: MicroBooNE, Icarus, SBND. 
• Future: DUNE (70kT LArTPC deep underground, plus near detector).

• Charged particles ionize liquid 
argon as they travel. 

• Ionisation electrons drift due to 
HV electrode field, and are 
collected by anode wires. 

• Wire spacing ~3mm – produce 
high-resolution images.
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Standard reconstruction chain

• Raw TPC output is wire waveforms. 
• Waveforms are then deconvolved and hit-finding is applied to produce Gaussian hits. 
• Each wire plane forms a 2D image in the space of wire vs readout time. 
• Three wire planes angled at -36°, 0°, 36° provide three 2D representations of the 

event. 
• These 2D representations can be used to construct a 3D representation of the event.

ArgoNeuT data eventT. Yang (ICHEP 2016)
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Deep Underground Neutrino Experiment
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• 70 kt LArTPC, 1.5km underground. 
• High exposure in low-background 

environment. 
• Modular design:  

• Four large detector modules. 
• Each consists of 200 individual TPCs. 
• Transformations necessary to combine 

data across multiple modules in 2D.
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Machine Learning in DUNE

• Liquid Argon Time Projection Chambers (LArTPCs) provide extremely rich and 
detailed information due to their high resolution. 

• Taking full advantage of this information requires sophisticated event 
reconstruction techniques. 

• Machine learning is increasingly being adopted due to its ability to outperform 
traditional methods: 
• CNNs for event ID. 
• 3D CNNs for pixel and instance segmentation. 
• Graph neural networks (GNNs) for both high- and low-level reconstruction. 

• DUNE’s modular Pandora reconstruction framework beginning to explore ML-
based reconstruction modules.

17
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Neutrino oscillations at DUNE

• Neutrino oscillation measurements at DUNE will be performed using similar techniques 
to those previously discussed for NOvA. 

• High-power beam, high-resolution LArTPC detectors and large detector mass will 
allow neutrinos to be collected with much larger statistics. 

• Current sensitivities are produced using simulated fluxes & cross-sections paired with 
parameterised reconstruction assumptions. 

• Current baseline method is CVN trained on fully simulated DUNE neutrino interactions.

18
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DUNE CVN
• Implementation is the same as NOvA: 

• Perform low-level reconstruction (wire deconvolution, hit finding). 
• Identify a region of interest, and produce pixel map inputs. 
• Stitch together pixel maps across multiple TPC modules. 
• Train to classify neutrino flavour (no cosmics due to DUNE’s depth).

19
arXiV: 2006.15052
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DUNE CVN

20
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DUNE sensitivity

• DUNE’s sensitivity to primary physics goals (CP violation, mass ordering) is 
based on efficiencies and purities achieved by CVN. 
• CVN performance surpasses previous assumptions about event ID 

capabilities.

21
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ML triggering at DUNE

• DUNE is a stable large-mass detector in a low 
background environment. 

• Besides neutrino physics, DUNE is well-suited for a 
range of rare searches: 
• Supernova neutrinos 
• Proton decay 

•  oscillation 
• …etc 

• Studies into using ML for triggering have shown 
some promise, and FPGA studies show 
improvements in inference speed (x1.7) and energy 
efficiency (x2.6) over CPUs (see more here).

n − n̄

22
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Sparse Convolutions
• Many CNN applications in neutrino physics are locally dense but globally sparse. 
• Classifying these dense pixel maps involves many computations wasted multiplying your model 

weights by 0. 
• Solution: Use sparse convolutions to only operate on interesting regions.

23
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Sparse Convolutions

• Facebook’s SparseConvNet and later NVIDIA’s (formerly Stanford’s) 
MinkowskiEngine are PyTorch packages which implement sparse convolutions. 

• Only perform convolution if the pixel at the centre of the receptive field is non-zero.

24
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Sparse Convolutions
• First paper investigating sparse CNNs 

within neutrino physics demonstrated 
significant improvements in inference time 
and memory usage for a MicroBooNE-
equivalent detector. 

• Sparse convolutions remove the need for 
ROI-finding in large detectors. 
• Scale of sparse pixel map set by 

number of active pixels. 
• Detector region can be arbitrarily large 

• Sparse CNN approaches are being 
developed across the SBN and DUNE 
Near Detector by SLAC, and in NOvA and 
ProtoDUNE by University of Cincinnati.

25
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3D CNN reconstruction

• SLAC LArTPC reconstruction tools utilise 3D sparse 
CNNs to remove ghost voxels, and classify particle 
type. 

• Instance segmentation to group voxels together 
into objects. 

• Disparate EM shower fragments grouped using a 
GNN. 

• Second GNN layer to group together objects into 
interactions.

26

Connecting the Dots 2020 
F. Drielsma
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ProtoDUNE Sparse CNN

• Sparse 3D CNN for voxel segmentation also developed for ProtoDUNE. 
• Test beam prototype for DUNE far detector at CERN.

27

Neutrino 2020 
C. Sarasty
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Graph neural networks
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• Describe information structure as a graph represented by nodes and edges.

• Nodes are generalised as 
quantised objects with some 
arbitrary set of features. 

• Edges describe the 
relationships between nodes. 

• Perform convolutions on nodes 
and edges to learn relationships 
within the graph. 

• Output is user-defined: 
• Classify nodes or edges. 
• Classify full graph. 
• Regression outputs.
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• Promising results from the Exa.TrkX collaboration using GNN methods for track 
reconstruction in the HL-LHC. 

• Adapting these methods for 2D reconstruction in the DUNE far detector. 
• CNN-based methods perform well, but require transformation of 3D point cloud 

into a grid. 
• Graph-based techniques can operate on the data in its native structure.

arXiv:1810.06111

Exa.TrkX
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GNNs in DUNE
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• Developing GNNs for particle reconstruction in 
2D using simulated CCQE beam neutrino 
interactions. 
• Few-GeV energy. 
• Neutrinos travel along beam direction. 
• Typically “clean” interactions – primary lepton 

(e,μ) and minimal hadronic activity. 

• Train multihead attention message-passing 
network to classify relationships between 
detector hits. 
• Determine whether the hits were created by 

the same particle – and if so, whether that 
particle is an EM shower, μ or hadronic.

Incom
ing neutrino

Nucleus Proton

Electron show
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GNNs in DUNE

• Current iteration achieves 84% accuracy in classifying graph edges. 
• Exploring further graph-based approaches.

31

Ground truth

Model output

hadronic, muon, shower, false
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Summary

• Accelerator neutrino physics seeing increasingly widespread ML use. 
• NOvA, SBN, DUNE, Minerva (not mentioned here!) 

• At this point, ML applications in accelerator neutrino physics are mostly offline. 
• Reconstruction tools after data has already been collected. 
• Some lower-level ML applications for raw data/triggering are being explored. 

• Personal opinion: even in places where techniques are mature, integration 
between ML and analysis tools could be improved. 
• CPU inference. 
• Training environments separate from sim/reco/analysis ecosystem. 
• Process streamlined in NOvA with HDF5 integration. 
• Active work in FermiGrid, HPC to improve this!

32



Backup



Machine Learning in Accelerator-Based Neutrinos – J Hewes – 2nd December 2020

Neutrino oscillations
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• Parameterise with two mass terms, three angles and one phase:
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Neutrino oscillations

• Several parameters in our current neutrino 
oscillation framework remain unmeasured: 

• Neutrino mass ordering (sign of ). 

• CP-violating phase ( ). 

• Octant of . 
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