Behavior Medicine Rd.

Computer Science St.

State of the Art in Wearable-based Passive Health Sensing, Detection, and Monitoring

Preventive Medicine Way

Sougata Sen (Northwestern University) http://sougata-sen.com/

#### Collaborators





























http://kamoamoa.eecs.northwestern.edu/

https://auracle-project.org/

#### Research in mobile health



#### Effect of habits on health



Overeating



**Smoking** 



Low physical activity



Cardio Vaighutan beistearses



**Diabetes** 



Respiratory diseases Obesity



### How do we become more proactive?

P4 medicine approach: Focus more on wellness than on disease



"If you can measure behavior, you can change it."

#### Science is measurement (Henry Stacy Marks, 1879)

#### The Wearables Database Facts



Vandrico, Inc.



3D printed case with hole for proximity and light

Switch on and charge

Note: Some devices fall into more than one category.

**427**Number of Devices

\$326

Average Price (USD)

266

Number of Companies

















Leather band













# Mobile and wearable sensor devices **can enable** proactive health monitoring.























# Challenges of Mobile and wearable sensor devices that needs addressing









### Can passive sensing help us ...

- ... understand behavior and predict problems?
- ... intervene to prevent?



What When Where How

#### Eating detection using wearable sensors















ACM UbiComp Adjunct'18 ACM IMWUT'20



## NeckSense

www.necksense.info

novel neck-worn device with multiple embedded sensors

...infer eating behavior from contactless sensors

...tested on clinical population

...tested in real-world settings







#### benefits to NeckSense

- ... understand characteristics of an eating episode
- ... detect eating in real-time
- ... trigger timely interventions for diet recall and behavior change





### NeckSense Deployment



validated using a wearable video camera for 270 hours in-the-wild ...data and code available freely for research purpose



Multiple sensors capture eating
... proximity signal captures periodicity of chew
... ambient light as a proxy to feeding gestures
... IMU calculates leaning forward and
backward angle to infer bite





#### Defining an eating episode



Eating

#### processing four signals from NeckSense





#### segmentation using proximity sensing signal



$$\epsilon$$
-periodic:  $\frac{p_{max}}{p_{min}} < 1 + \epsilon$ 

Pmin (0.9) and Pmax (1.1) close in distance



Pmin (0.4) and Pmax (1.2) far in distance



#### feature extraction

| Category                | Features                                            |  |
|-------------------------|-----------------------------------------------------|--|
| Statistics              | Max, min, mean, median,                             |  |
|                         | standard deviation, RMS,                            |  |
|                         | correlation, skewness, kurtosis,                    |  |
|                         | 1st and 3rd quartile, interquartile range           |  |
| Frequency               | Frequency amplitude of 0.25 Hz, 0.5 Hz, 0.75 Hz, 1  |  |
|                         | Hz, 1.25 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.25 Hz, 2.5 Hz |  |
| Statistics of Frequency | Skewness and kurtosis of spectrum from frequency    |  |
|                         | features                                            |  |
| Time-series             | Count below/above mean                              |  |
|                         | First location of min/max                           |  |
|                         | Longest strike below/above mean                     |  |
|                         | Number of peaks                                     |  |
| Periodic subsequence    | $p_{min}, p_{max}, \epsilon$ , length               |  |
| Time                    | Hour of datetime                                    |  |

Chewing Sequence?

XGBoost Classifier

Eating episode?

Fusion

Yes? No?

we performed the following exploratory study...

Total Hours: 134 hours

in-the-wild

- Camera wear
- Data transfer and delete
- 24-hour diet recall

Baseline

14 partial days (2 weeks)

Assessmen

- Taught to use technology
  - Told to wear during eating episodes
- Pre-study questionnaire

- Returned technology
- Post-study questionnaire
- Trained Labelers
   Annotate using ELAN

#### we performed the following free-living study...

**Total Hours: 137 hours** 

in-the-wild

- Camera wear
- Data transfer and delete
- 24-hour diet recall

Baseline

#### 2 complete days

Assessmen

- Taught to use technology
  - Told to wear all day
- Pre-study questionnaire

- Returned technology
- Post-study questionnaire
- Trained Labelers
   Annotate using ELAN

in the exploratory study... **81.6% Average F-score** in the free-living study... **77.1% Average F-score** 

When trained on people without obesity, show poor test performance on people with obesity

|        |           | Test   |           |
|--------|-----------|--------|-----------|
|        |           | Obese  | Non-obese |
| Train  | Obese     |        | 75.33%    |
| 114111 | Non-obese | 66.75% | 79.88%    |

Per-episode LOPO evaluation

#### NeckSense is ...

- designed to detect eating episodes in the real-world for long-term wear
- validated using longest periodic subsequence algorithm
- validated on people with and without obesity and solely in free-living settings

Data set available and device available upon request (www.necksense.info)



### NeckSense Deployment





### ActiSight Camera



### Processing pipeline



### ActiSight v2 implementation

- •Onboard DNN compute can enable...
  - Enhanced privacy through obfuscation
  - User interactions in real time
    - Vibrates when problematic behavior is detected
    - Send EMA on detecting problematic behavior
  - Recording selectively



### **Current Hardware implementation**

- Motherboard
  - Cortex M4
  - Storage
- Camera daughterboard
  - < 1mW hm01b0 camera</li>
  - MLX Thermal Camera
  - Onboard iCE40 FPGA
    - JPEG compression in < 5mW</li>
    - Accelerate small DNNs (100k- 500k 8bit weights) < ~50mW</li>
- Modular Sensor Daughterboards
  - Microphone
  - Temperature
  - Distance
  - And more!
- Fullday battery life





### Future plans for ActiSight (v3)



### Can passive sensing help us ...

- ... understand behavior and predict problems
- ... intervene to prevent?

#### Future directions in mHealth sensing

Fine-grained activity monitoring

Multi-day battery life

Privacy conscious

Personalized Real-time interventions

Multiple task inference

Thank you!!!
Sougata.sen@northwestern.edu

### Summary

## Auracle

https://auracle-project.org/









### Auracle goal

- Objective:
  - Detect the eating activity in free-living.
  - Provide day-long battery life.
- Intuition: the sound of chewing can be an indicator of eating



Definition of Eating: an activity involving chewing of food that is eventually swallowed.

- Excludes drinking actions (usually does not involve chewing).
- Excludes chewing gum (usually does not involve swallowing).

### Contact microphone

Off-shelf microphone

Placed behind the ear

- Strong chewing signal
- Does not impede hearing
- Could be miniaturized to become unseen







### System design

#### Auracle includes:

- Contact microphone
- Printed circuit board
  - Analog front end
  - MSP430 microcontroller
  - SD card
  - Bluetooth
- Battery
- 3D printed mechanical housing



### Feasibility of Auracle

- Recruited 14 participants
  - 2-hour session per participant
  - 26 eating episodes
- Evaluation metric:
  - Leave-one-person-out cross validation at 1-minute resolution
  - Leave-one-person-out cross validation at episode level

### Auracle: Data Analysis Pipeline



Preprocessing and feature selection

Raw Data: 20 to 250 Hz range

#### **Preprocessing:**

- Framing
- Normalization

#### **Feature extraction:**

700 features extracted

#### **Feature selection:**

Remove irrelevant features



| Feature category              | Description                                                            | Number of features |
|-------------------------------|------------------------------------------------------------------------|--------------------|
| FFT coefficients              | Fourier coefficients of one-dimensional<br>Discrete Fourier Transform  | 29                 |
| Range count                   | Count of values within a specific range                                | 1                  |
| Value count                   | Count of occurrences of a specific value                               | 1                  |
| Number of crossings           | Count of crossings of a specific value                                 | 3                  |
| Sum of reoccuring values      | Sum of all values that present more than once                          | 1                  |
| Sum of reoccuring data points | Sum of all data points that present more than once                     | 1                  |
| Count above mean              | Number of values that are higher than mean                             | 1                  |
| Longest strike above mean     | Length of the longest consecutive subsequence that is bigger than mean | 1                  |
| Number of peaks               | Number of peaks at different width scales                              | 2                  |

### 2-stage classification





#### Per-minute evaluation



### Per-episode evaluation





#### Episode-based evaluation

Jaccard similarity coefficient  $(\frac{|A \cap B|}{|A \cup B|}) > 50\%$ 

| Ground truth       | 26 episodes |
|--------------------|-------------|
| Correctly detected | 20 episodes |
| Episodes missed    | 6 episodes  |
| Falsely detected   | 12 episodes |
| ·                  |             |

### Power evaluation

|                                   | Avg. power<br>draw (mW) |
|-----------------------------------|-------------------------|
| Sleep state                       | 0.89                    |
| Data processing                   | +18.29                  |
| Summary data logging              | +2.29                   |
| Raw data and summary data logging | +7.28                   |
| BLE                               | +3.37                   |

Battery life with 110 mAh battery → 28.1 hours





## microStressIMA

Passive Sensing Framework for Detactivity Stress in Pregnant Mot





Zachary King, Judith Moskowitz, Begum Egilmez, Shibo Zhang, Lida Zhang, Michael Bass, John Rogers, Roozbeh Ghaffari, Laurie Wakshlag, Nabil Alshurafa

