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Research in mobile health

Health Outcomes

Environment Mental StateBehaviorPhysiology

Context

Prediction algorithms                 

Action
Intervention or Treatments

individual

“The application of wearable and ambient sensors, mobile 
apps, social media, and location-tracking technology singly 
or in combination to obtain data pertinent to wellness and 
disease diagnosis, prevention, and management” (Ida 
Sim, NEJM)

Adapted from B. Marlin
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Effect of habits on health
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Overeating Smoking Low physical activity

High cholesterol High blood sugar ObesityCardiovascular diseases Certain cancers Diabetes Respiratory diseases

Chronic diseases



Our approach to 
health is reactive

We should be more proactive



How do we become more proactive?
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“If you can measure behavior, you can change it.”
Reference: Hood, Leroy. "Systems biology and p4 medicine: past, present, and future." Rambam Maimonides medical journal 4, no. 2 (2013).

P4 medicine approach: Focus more on wellness than on disease

Predictive Preventive Personalized Participatory

Measure activities 
and behaviors!!!



Science is measurement (Henry Stacy Marks, 1879)

Vandrico, Inc.
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Mobile and wearable sensor devices can 
enable proactive health monitoring.

Just-in-time 
interventions

Personalized Custom 
deployment Cost efficient

Sensing 
capabilities

Real-time 
monitoringUnobtrusive



Challenges of Mobile and wearable 
sensor devices that needs addressing

Battery life Size

Data Labeling 

Computation 
capabilities Privacy

Adaptability Seamless 
deployability

Data 
modeling/ 
validation 



Can passive sensing help us ...
… understand behavior and predict problems?
… intervene to prevent?

What
When
Where
How



Eating detection using wearable sensors

12Reference: Amft, Oliver, and Gerhard Troster. "On-body sensing solutions for automatic dietary monitoring." IEEE pervasive computing 8.2 (2009): 62-70.

Annapurna

Auracle

NeckSense

IEEE PerCom Adjunct’15
ACM MobiSys Adjunct’17
IEEE WoWMoM’18
Elsevier PMC’20

ACM MobiSys Adjunct’17
ACM IMWUT’18
IEEE ICHI’20

ACM UbiComp Adjunct’18 
ACM IMWUT’20



NeckSense
www.necksense.info

http://www.necksense.info/


novel neck-worn device with multiple embedded sensors
…infer eating behavior from contactless sensors
…tested on clinical population
…tested in real-world settings

Controlled-lab environment

Real-world scene
captured by wearable 
camera
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benefits to NeckSense
… understand characteristics of an eating episode
… detect eating in real-time
… trigger timely interventions for diet recall and behavior change
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NeckSense Deployment
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validated using a wearable video camera for 270 hours in-the-wild
…data and code available freely for research purpose
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Multiple sensors capture eating
… proximity signal captures periodicity of chew
… ambient light as a proxy to feeding gestures
… IMU calculates leaning forward and 
backward angle to infer bite
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Defining an eating episode
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“A group of chewing sequences with inter-chewing 
sequence breaks no larger than 900 seconds.”



processing four signals from NeckSense

(Lean Forward Angle)
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segmentation using proximity sensing signal

Local peaks but not 
prominent peaks

𝟄𝟄-periodic: 𝘱𝘱𝑚𝑚𝑚𝑚𝑚𝑚
𝘱𝘱𝑚𝑚𝑚𝑚𝑚𝑚

< 1 + 𝟄𝟄

Time (seconds)

0 1 2.1 3.0

Pmin (0.9) and Pmax (1.1) close in distance

Time (seconds)

0 0.8 1.2 2.4

Pmin (0.4) and Pmax (1.2) far in distance

3.0
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feature extraction

XGBoost Classifier
Chewing Sequence?

Yes? No?

Eating episode?

Fusion
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we performed the following exploratory study…

• Taught to use technology
• Told to wear during eating episodes

• Pre-study questionnaire

• Returned technology
• Post-study 

questionnaire
• Trained Labelers 

Annotate using ELAN

• Camera wear
• Data transfer and delete
• 24-hour diet recall

Baseline 14 partial days (2 weeks) Assessmen

in-the-wild

Total Hours: 134 hours 



we performed the following free-living study…

• Taught to use technology
• Told to wear all day

• Pre-study questionnaire

• Returned technology
• Post-study 

questionnaire
• Trained Labelers 

Annotate using ELAN

• Camera wear
• Data transfer and 

delete
• 24-hour diet recall

in-the-wild

Total Hours: 137 hours 

Baseline 2 complete days Assessmen

24



in the exploratory study… 81.6% Average F-score
in the free-living study… 77.1% Average F-score

Per-episode LOPO evaluation

When trained on people without obesity,
show poor test performance on people with obesity
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• designed to detect eating episodes in the real-world for long-term wear

• validated using longest periodic subsequence algorithm 

• validated on people with and without obesity and solely in free-living settings

Data set available and device available upon request (www.necksense.info)

NeckSense is …
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NeckSense Deployment
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ActiSight Camera

28



ActiSight Camera
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Processing pipeline
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ActiSight v2 implementation
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•Onboard DNN compute can enable…
• Enhanced privacy through obfuscation
• User interactions in real time

• Vibrates when problematic behavior is 
detected

• Send EMA on detecting problematic 
behavior

• Recording selectively



Current Hardware implementation
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• Motherboard
• Cortex M4
• Storage

• Camera daughterboard
• < 1mW hm01b0 camera
• MLX Thermal Camera
• Onboard iCE40 FPGA

• JPEG compression in < 5mW
• Accelerate small DNNs

(100k - 500k 8-bit weights) < ~50mW
• Modular Sensor Daughterboards

• Microphone
• Temperature
• Distance
• And more!

• Full-day battery life Motherboard  
(CPU +Storage)

MicMLX thermal 
camera

hm01b0
RGB camera օօօ



Future plans for ActiSight (v3)
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• Motherboard
• Cortex M4
• Storage

• Up to 4 swappable compute daughterboards
• FPGA
• MAX78000 DNN accelerator
• Stackable on top of motherboard

• One camera daughterboard
• Many swappable sensor daughterboards

Motherboard  
(CPU +Storage)

MicMLX thermal 
camera

hm01b0
RGB camera օօօ

FPGA compute board 
for audio compression

FPGA compute board 
for image compression

DNN accelerator 
board



Can passive sensing help us ...
… understand behavior and predict problems
… intervene to prevent?
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Future directions in mHealth sensing
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Fine-grained activity 
monitoring 

Multi-day battery life

Personalized Real-time 
interventions Multiple task inference

Privacy conscious

Thank you!!!
Sougata.sen@northwestern.edu



Summary
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Auracle
https://auracle-project.org/

https://auracle-project.org/
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Auracle goal
• Objective:

• Detect the eating activity in free-living.
• Provide day-long battery life.

• Intuition: the sound of chewing can be an indicator of eating

Definition of Eating: an activity involving chewing of food that is eventually swallowed.
- Excludes drinking actions (usually does not involve chewing).
- Excludes chewing gum (usually does not involve swallowing).
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Contact microphone
Off-shelf microphone

Placed behind the ear

• Strong chewing signal
• Does not impede hearing
• Could be miniaturized to become unseen
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System design
Auracle includes: 
• Contact microphone
• Printed circuit board

• Analog front end
• MSP430 microcontroller
• SD card
• Bluetooth

• Battery
• 3D printed mechanical housing

Reference: Shengjie Bi et al., IMWUT 2018.
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Feasibility of Auracle
• Recruited 14 participants

• 2-hour session per participant
• 26 eating episodes

• Evaluation metric:
• Leave-one-person-out cross validation at 1-minute resolution
• Leave-one-person-out cross validation at episode level
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Auracle: Data Analysis Pipeline



Preprocessing and feature selection
Raw Data: 20 to 250 Hz range

Preprocessing:
• Framing
• Normalization

Feature extraction: 
700 features extracted

Feature selection:
• Remove irrelevant features
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2-stage classification
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Segmented audio data

Stage 1 classification: 
thresholding

Silence

Stage 2 classification: 
Logistic Regression

Eating Non-eating

Non-silence



Per-minute evaluation
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e e … e e

3-second frames

Eating minute 75.7%

62.1% 62.9%

39.4%

76.9%

80.8%
81.0%

86.6%
91.4%

75.7%
77.5%

68.9% 71.8%

53.9%

75.1%

0%

20%

40%
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80%

100%
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Classifier Type

Precision Recall F1 scoreF1 score = 77.5%



Per-episode evaluation
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Time

episode episode

Less than 
15 minutes

More than 
15 minutes

Jaccard similarity coefficient  (|𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

) > 50%

Episode-based evaluation

Ground truth 26 episodes

Correctly detected 20 episodes

Episodes missed 6 episodes

Falsely detected 12 episodes
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Power evaluation

Avg. power 
draw (mW)

Sleep state 0.89
Data processing +18.29
Summary data logging +2.29
Raw data and summary data logging +7.28
BLE +3.37

Battery life with 110 mAh battery  28.1 hours
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Webpage: Syncwiseproject.info

microStress-EMA
A Passive Sensing Framework for Detecting i-the-wild 

Stress in Pregnant Mot

Zachary King, Judith Moskowitz, Begum Egilmez, Shibo Zhang, Lida Zhang, 
Michael Bass, John Rogers, Roozbeh Ghaffari, Laurie Wakshlag, Nabil Alshurafa

ACM Ubicomp 2020
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