Adversarial training for density estimation: a case study in collider physics

> Kin Ho Lo Fast Machine Learning for Science, 1st December, 2020

Formulation

- Fast MC simulation with ML
 - GAN: CaloGAN, Z→µµ, di-jets, jets, MEM
 - Variational inference
- MC simulation as condition probability density $p(x \mid \theta)$
 - · θ as generator-level quantities, x as reco-level quantities
 - Given any θ , we would like to have a good approximation $q(x \mid \theta)$ to $p(x \mid \theta)$
- Common density estimation technique usually involves likelihood model
- Density estimation with adversarial training
- A case study with a simple example of muon reconstruction in with Delphes simulation

Adversarial training for density estimation: a case in collider physics

- Generator as $g(z \mid \theta) : z \to x$
 - Sometimes the latent variable z is of little interest
- Density estimation: approximate $p(x | \theta)$ with $q_{\phi}(x | \theta)$, then do sampling in x
- Commonly-used $q_{\phi}(x \mid \theta)$: mixture density network
- Need to enable back-propagation by "reparametisation trick" or other techniques

K.H Lo

Fast Machine Learning for Science, 1st December 2020

A case study in collider physics

- Muon reconstruction with $pp \to Z \to \mu \mu$ in Delphes simulation in CMS detector setup
- · A sample of 5 million events
 - θ : p_T , η, φ, charge
 - $x: p_T$, η , ϕ , t_{flight} , D_0 , D_z , positions of hits in outer tracker
- $q_{\phi}(x \mid \theta) : \theta \to x$ as a "samplable" forward feeding neural network

K.H Lo

Fast Machine Learning for Science, 1st December 2020

Comparison of results

K.H Lo

Fast Machine Learning for Science, 1st December 2020

Summary

- Density estimation more akin to standard Monte Carlo simulation used in collider physics
- Possible to perform density estimation with adversarial training
- Demonstrated a test case of muon reconstruction in a simple setup with Delphes simulation
 - Observed reasonably good performance
 - Possibility to re-use the discriminator information when generating synthetic samples
- Complicated $p(x | \theta)$, such as actual ATLAS/CMS reconstruction software, will require advanced $q_{\phi}(x | \theta)$, back-propagation and sampling techniques