Application of a neural network based technique for track identification in Nuclear Track Detectors (NTD)

Kanik Palodhi (presenter)^a

kpaop@caluniv.ac.in

Joydeep Chatterjee^a, Rupamoy Bhattacharyya^b, Atanu Maulik^c ^aUniversity of Calcutta, India ^bBose Institute, India

^cPhysics Department, University of Alberta, Canada

Fast Machine Learning for Science Workshop Dec 01,2020

Nuclear track detectors (NTDs)

- NTDs (CR-39, Makrofol) are polymer films used as detectors of Highly Ionizing Particles (HIPs).
- Heavy Charged particles break polymer bonds and leave behind damage trails (latent tracks).
- Chemical etching with KOH solutions changes latent tracks into conical etch-pits (~10 µm).
- Study of etch-pit geometry under optical microscopes reveal vital information about particles forming tracks.

2

NTDs as detectors of rare events

- Existence of natural thresholds of registration eliminates much of the low-Z background.
- Great choice as detectors
 - in rare event e.g. monopoles, strangelets, Q-balls
 - search in cosmic rays e.g. SLIM
 - particle accelerators e.g. MoEDAL

Passive nature

- No power or readout electronics required.
- Ideal for deployment in remote locations, like high mountain altitudes, balloons, space stations etc.

Challenges of scanning NTDs

- Locating particles tracks of interest on NTDs against background poses significant challenges.
- Background comes from defects in the plastic and the trails of other charged particles (neutron induced tracks, spallation products, radon alpha etc.).
- Current image analysis software using grey level discrimination, eccentricity cuts etc. are not up to the task.
- Painstaking work by human experts
- Error prone and time consuming

Proposed method – sequential deconvolution and convolution followed by ANN

Step I

- Mask selection M(x, y) using a suitable NTD track from objects N(x, y) which is the image with NTDs
- A gaussian mask G(x, y) chosen for deconvolution with N(x, y)
- Next, M(x, y) is convolved with entire image which generates peak values at the centre of symmetric patterns depending upon their common area.
- Manual threshold for separation of etch-pits from noises

Step 2

- Average of the image generated after deconv-conv and threshold are used for inputs to an artificial neural network (feed-forward)
- Output produces predicted threshold after training, later applied to all other test images
- Marking the actual etch-pits using morphological technique
- 5 Kanik Palodhi *et al*, Convolution based hybrid image processing technique for microscopic images of etch-pits in Nuclear Track Detectors, Radiation Measurements, Volume 130, 106219, January 2020.

Proposed Method (cont'd) – simulations

6 Kanik Palodhi et al, Convolution based hybrid image processing technique for microscopic images of etch-pits in Nuclear Track Detectors, Radiation Measurements, Volume 130, 106219, January 2020.

Proposed method (cont'd) – ANN model

Using the predicted threshold and positional information, morphological techniques are used for marking the etch-pits within the images as shown later.

Experimental results – accelerator images with normal incidence

Huge scratch-marks and other background noises

Dent overlap with the etch-pit and finds one even at the edge

Experimental results – accelerator images with 30° incidence

Huge scratch-marks and other background noises

Etch-pit detected at the edge

Other accelerator images

Etch-pit detected at the edge

Huge background noises and etch-pit at the edge

Results

Image	Total no.	Training	Test	Accuracy	Over-count	Under-count
source	of image frames	images	images		error	error
Accelerator exposed						
(normal (0°) incidence)	60	45	15	94%	3%	3%
Accelerator exposed						
$(30^{\circ} \text{ angle of incidence})$	60	45	15	93%	4%	3%
Open-air exposed						
(at Darjeeling)	50	45	13	90%	3%	7%

The significance is with much less training images compared to other techniques, this method can achieve greater accuracy.

Conclusion

- A simple ANN based method is introduced for etch-pit detection from microscope images of NTDs.
- The method uses sequential deconvolution-convolution to generate peaks that, in turn, is used for setting the threshold for selecting etch-pits.
- The method is computationally efficient and achieves higher accuracy.

Work of our group on this topic

- Kanik Palodhi *et al*, Convolution based hybrid image processing technique for microscopic images of etch-pits in Nuclear Track Detectors, Radiation Measurements, Volume 130, 106219, January 2020.
- 2. Joydeep Chatterjee *et al,* Application of Machine Learning on sequential deconvolution and convolution techniques for analysis of Nuclear Track Detector (NTD) images, arXiv:2005.07368, Fri, 15 May 2020, (submitted to Radiation Measurements)
- 3. "Etch-pit counter" a software applied for Indian copyright

^{|2}

Appendix

Deconvolution before convolution gives higher peak compared to only convolution shown in ID.

