
Hamza Javed
Fast Machine Learning for Science Workshop – November 30, 2020

Deploying low-latency Neural Networks on Intel FPGAs



Problem

• Ultra low latency.

• High throughput

2



Approach

Quantization /
Pruning

Model
HLS Model

Configuration
Tuning

HLS Project

Synthesis

FPGA

HLS Backend

3



Quartus Backend

• Adopts layer architectures from the Xilinx backend.

• Parallelism is controlled via reuse factor while Quantization is 

handled through internal fixed-point datatypes.

4



Supported Layers

5

Layer Vivado Quartus

Dense ✓ ✓

Sparse Dense ✓ ✓

RNN ✓ ✓

GRU ✓ ✓

LSTM ✓ ✓

CONV1D ✓ ✗

CONV2D ✓ ✗

POOL ✓ ✗



Base-Arch (Accelerator Templates)

• A tiled-PE is used to perform 

matrix multiplication 

operations within layers.

• Lookup tables are used to 

approximate mathematical 

functions.

6



DL Layers

Layer Weights storage Composition

Dense Latency Registers Tiled-PE

Dense Large Block RAM Tiled-PE

Sparse Dense* Registers (Sparsified with COO) Tiled-PE with online index 
computations

RNN Block RAM Tiled-PE , Activation Block

GRU Block RAM Tiled-PE , Activation Blocks

LSTM Block RAM Tiled-PE , Activation Blocks

*partially supported for narrow networks.

7

All of the Quartus layers include optimizations for binary/ternary computations.



DL Layers

8



Test Case

• A Deep Neural Network trained for jet 
classification

• Five outputs corresponding to each of 
the g, q, w, z & t jet.

[1] Javier Duarte et al., Fast inference of deep neural networks in FPGAs for particle physics, 2018. 9



Results

Results are shown for an Arria 10 FPGA with a 4ns clock. Missing points represent designs that consume more resources than 
those present on the device 10



Results

Results are shown for an Arria 10 FPGA with a 4ns clock. 11



Results

• A wider & deeper version of the previous model. 
(16 x 200 x 200 x 200 x 200 x 200 x 5)

Reuse 
Factor

ALUTs FFs RAMs MLABs DPSs Latency ii

% Cycles @ 4ns

100 20 9 32 0 825 684 100

200 15 7 16 0 412.5 1280.5 200

Results are shown for an Arria 10 FPGA with a 4ns clock. 12



Test Case - LSTMs

• A Deep LSTM trained for anomaly detection at LIGO. 

Input = (timestep , 1)

L1 = LSTM(32, activation='relu', return_sequences=True)(inputs)

L2 = LSTM(8, activation='relu', return_sequences=False)(L1)

L3 = RepeatVector(X.shape[1])(L2)

L4 = LSTM(8, activation='relu', return_sequences=True)(L3)

L5 = LSTM(32, activation='relu', return_sequences=True)(L4)

output = TimeDistributed(Dense(X.shape[2]))(L5)

[2] Eric Anton Moreno et al, Anomaly Detection with Spiking Neural Networks. Link. 13

https://indico.cern.ch/event/924283/contributions/4105325/


Results

• Resource Usage (mixed RF @ 1,8,32)

• Latency @ (timesteps = 8) = 320 cycles or 1.1us (@300MHz)

Results are shown for an Arria 10 FPGA 14



Conclusion

• We proposed a new backend within hls4ml to deploy DL models to 

Intel FPGAs.

• We introduce a new approach to build scalable layers using basic 

computational units.

• We then use it to add support for sparse dense and scalable recurrent 

layers.

15



Questions?



Future Work

• Performance / Error prediction for fast config-level design-space 

exploration.

• Support for convolution and pooling layers.

• End-to-end workflow for integration into low-power SoC’s.

17


	Slide Number 1
	Problem
	Approach
	Quartus Backend
	Supported Layers
	Base-Arch (Accelerator Templates)
	DL Layers
	DL Layers
	Test Case
	Results
	Results
	Results
	Test Case - LSTMs
	Results
	Conclusion
	Questions?
	Future Work

