

Autoencoders for Anomaly Detection in Real-Time at the LHC

Thea Arrestad¹, <u>Katya Govorkova¹</u>, Thomas James¹, Vladimir Loncar¹, Jennifer Ngadiuba², Maurizio Pierini¹, Adrian Alan Pol¹, Ema Puljak¹, Sioni Summers¹ ¹CERN ²Caltech

FastML Workshop 30 November 2020

DATA FLOW AT THE LHC

40 MHz

Advanced search for new phenomena — see a dedicated <u>talk by Jennifer</u>

Reduce data rates for offline processing from **40 MHz to 1 kHz**

Data selection algorithm must select interesting data in real time within $O(1 \ \mu sec)$

Deploy **Autoencoder** algorithm on **FPGA** using **hls4ml** to search for anomalous events

1 kHz

CMS CERN

Autoencoders

- Encode input in smaller dimensional space
- Train on 'standard', background events
- Anomalous data will have higher loss
- Calculating the loss requires to store the input until the output is computed

Data

- Train on 9 million events simulated with <u>Delphes</u>, a
- general detector simulation tool
- Test performance on several different New Physics
- simulated samples
- Array of particles up to 10 jets, 4 μ and 4 e/ $\!\gamma$

CONVOLUTIONAL AND DENSE AE ARCHITECTURES

Anomaly detection

Reconstruction of the original features

AE has to be implemented on FPGAs

https://fastmachinelearning.org/hls4ml/

Preliminary results for Dense and Convolutional AEs

on Xilinx VU9P — Realistic device for the trigger system

TODO quantise* and/or prune the model

fix an issue with the last layer dominating the latency $\ast\ast$

	Latency (ns)	DSPs (%)	LUTs (%)	Flip Flops (%)
Dense AE	80	21.6	3.6	0.7
Convolutional AE	2800**	42	12	3

* Quantisation can be done with <u>AutoQ/QKeras</u>, see a dedicated <u>talk by Thea</u>

AE models

Unsupervised model for anomaly detection is in active development

FPGA implementation

First results with hls4ml are promising

Next steps

Quantise and/or prune the models to improve the resource usage

Use quantisation aware training* to preserve accuracy while quantising

Perform a physics analysis that proves the utility of this approach