Track quality machine learning models on FPGAs for the CMS Phase 2 Level 1 trigger

Claire Savard for CMS collaboration Fast Machine Learning for Science Workshop December 1st, 2020

CMS Phase 2 Level 1 trigger

- Increasing luminosity in LHC requires detector upgrades
- CMS Level 1 trigger = initial trigger system for event selection
- Phase 2 includes:
 - Track information available (TF)
 - More powerful FPGAs
 - More sophisticated selection and reconstruction algorithms
- This work: track quality machine learning algorithm on TF

Track quality

- Track quality = probability of how "real" a track is
 - "real" track is a reconstructed track that originates from an actual particle
 - "fake" track is a reconstructed track created through error in the reconstruction process
- Use track quality to suppress fake tracks
 - Mask real physics occurring

Building track quality classifiers

- Labeling real and fake tracks \rightarrow classification problem
- Supervised machine learning application
 - Simulated data where labels (real/fake) are known
- Boosted decision trees (scikit-learn)
 - Intuitive, continuous + categorical data friendly, easy tuning
 - Similar to applying cuts to variables
- Neural networks (<u>keras</u>)
 - Great for complex data, matrix multiplication (FPGA friendly)
 - Increasingly popular in particle physics

Machine learning model stuctures

- Use small models to minimize FPGA resource usage
- After pruning and feature selection

Dataset

- Reconstructed tracks from combined QCD + $Z \rightarrow ee + Z \rightarrow \mu\mu$ simulated samples + real/fake track label
- Training set
 - 20,000 tracks
 - Contains equal amounts of muons, hadrons, electrons, and fake tracks to emphasize equal importance on each particle type
- Will compare neural network and boosted decision tree to current cut-based method optimized for track E_T^{miss}

Track quality classifier performance

- Machine learning classifiers outperform track E_T^{miss} selection criteria
 - NN = neural network
 - GBDT = gradient boosted decision tree
- NN and GBDT comparable
- Look further at a specific point on curve where false positive rate = 0.3

True positive rate = % correctly identified real tracks False positive rate = % incorrectly identified fake tracks AUC = area under curve (accuracy)

Track quality classifier performance

- GBDT results
- Average false positive rate of 0.3
- Efficiency highest for muons, followed by hadrons and electrons
 - Muons tend to be isolated
 - Hadrons undergo nuclear interactions
 - Electrons undergo Bremsstrahlung

True positive rate = % correctly identified real tracks p_T = transverse momentum

FPGA timing and resource usage

Xilinx VU9P FPGA, 240 MHz clock cycle, initial interval = 1, 10 bit precision (5 bits for int part)

Model	Python AUC	HLS AUC	Latency (clk)	LUT $\%$	FF %	DSP $\%$
NN	0.985	0.982	8	0.104	0.029	0.292
GBDT	0.986	0.981	3	0.140	0.027	0.0

- Project usage from simulated FPGA using <u>HLS</u>
 - Used <u>HLS4ML</u> for synthesizing NN
 - Used <u>Conifer</u> for synthesizing GBDT
- Both models perform the same in accuracy (AUC) and use minimal resources

Updates and future work

- GBDT track quality model included in <u>Level 1 tracker CMSSW</u> development branch, working on integration into central CMSSW
- Further testing on physical FPGAs
- Working on electron-specific track quality classifier
- Working on track quality classifier for displaced tracks
 - Displaced = does not originate from proton-proton collision site

Questions?

Backup

Track E_T^{miss} selection criteria

• Optimized to lower fake rate (% of fake leftover in sample after selection)

Track variable	Criteria
N_{stubs}	≥ 4
p_T	$\geq 2 \mathrm{GeV}$
χ^2/dof	< 10
χ^2_{bend}	< 2.2

Features

feature	description	range	X
ϕ	angle in xy-plane	$[-\pi,\pi]$	
η	pseudorapidity, describes angle relative to z axis	[-2.4,2.4]	
z_0 (cm)	Impact parameter along z	[-30,30]	
nstubs	number of stubs associated with the track	[4,7]	
nlaymiss _{interior}	number of layers missed within the sequence of those where stubs were found	[0,5]	
χ^2_{bend}	measure of bend consistency of track	[0,inf)	
χ^2_{rz}	measure of goodness-of-fit in rz-plane	[0,inf)	Not good for FPC
$\chi^2_{r\phi}$	measure of goodness-of-fit in $r\phi$ -plane	[0,inf)	

p+

Binning χ^2 features

- FPGAs require fixed precision
- Bin the 3 χ^2 variables to only use 3-4 bits
 - Ex: $\chi^2_{bend} = 2.2 \rightarrow bin 3$

Track variable	Digitization	Num. of bits
χ^2_{bend}	0, 0.5, 1.25, 2, 3, 5, 10, 50, inf	3
χ^2_{rz}	0, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 40, 100, 200, 500, 1000, 3000, inf	4
$\chi^2_{r\phi}$	0, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 40, 100, 200, 500, 1000, 3000, inf	4

Track quality classifier performance

- GBDT results
- Average false positive rate = 0.3

5.7

Track quality on FPGAs

- On FPGA in Phase 2 Level 1 trigger
- Used python packages for machine learning development
- Need to convert python models to FPGA-readable languages

[1] J. Duarte *et al.*, "Fast inference of deep neural networks in FPGAs for particle physics", <u>JINST 13 P07027 (2018)</u>
[2] S. Summers *et al.*, "Fast inference of boosted decision trees in FPGAs for particle physics", <u>JINST 15 P05026 (2020)</u>

Conifer overview (addition to HLS4ML)

- Facilitates conversion of Scikit-Learn/XGBoost decision tree models to FPGA firmware
 - Boosted decision tree
 - Random forest
- Model developed using Xilinx Vivado HLS or at RTL using VHDL
- Lightweight models, uses mostly LUTs, no DSPs
 - HLS4ML limited by DSP usage

