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Fermilab Site

Booster ring

• Booster synchrotron: 400 MeV H- from Linac accelerated 
to 8 GeV protons for delivery to Main Injector, experiments
• Batches delivered to MI/Recycler @15 hz ('rapid cycling')

• Efficient operation critical for PIP-II goal of MW beam
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• Combination of RF cavities       and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain 

the orbit of the accelerating beam
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• Combination of RF cavities       and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain 

the orbit of the accelerating beam
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8 GeV beam extracted at maximum B-field

A single Booster cycle

Credit: J. St. John
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• Combination of RF cavities       and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain 

the orbit of the accelerating beam

Spread in current* 
(B field) degrades beam 
quality, contributing to 
losses!

A single Booster cycle

Credit: J. St. John
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*Due to, e.g. the many nearby 
high-current, high-power loads
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III. FERMILAB BOOSTER ACCELERATOR
COMPLEX

A. Accelerator environment of the GMPS
regulator

The Booster rapid-cycling synchrotron receives the
400 MeV (kinetic energy) beam from the Fermilab Lin-
ear Accelerator (Linac) via charge-exchange (H� to H+).
This beam is accelerated to 8 GeV by synchronously
raising (“ramping”) the Booster accelerator cavities’ fre-
quency and the magnetic field of the combined-function
bending and focusing electromagnets known as gradi-
ent magnets, which are powered by the gradient magnet
power supply (GMPS) [27, 28]. The beam is extracted at
peak kinetic energy, after which the system is returned
to the injection state. This complete cycle repeats, si-
nusoidally varying the GMPS magnet current between
programmed current minimum and maximum at 15 Hz.

Meanwhile, other nearby high-current, high-power
electrical loads are varying in time, causing unwanted
fluctuations of the actual GMPS electrical current, and
thus fluctuations of the magnetic field in the Booster
gradient magnets. The role of the GMPS regulator is
to calculate and apply small compensating o↵sets in the
GMPS driving signal, improving the agreement of the re-
sulting minimum and maximum currents with their set
points. The present GMPS regulator system is a propor-
tional–integral–derivative (PID) controller [29, 30]. Fig-
ure 1 shows a schematic overview of the GMPS control
environment.

The power supplies that provide the combined DC and
AC components of the desired gradient magnet current
consist of a pair of three-phase series-connected silicon
controlled rectifier (SCR) [27] bridges fired at 720 Hz. An
LC filter network at the output greatly reduces 720 Hz
ripple, resulting in an output voltage that is proportional
to the sinusoidal program provided by the GMPS regula-
tor system. The series-connected electromagnet circuits
and their cell capacitor banks are driven at resonance at
15 Hz and coupled via a distributed choke system for by-
passing DC current. Figure 2 shows the power supply
output voltage due to the cosine program.

For monitoring purposes, a special series-connected
half-cell reference magnet located in the equipment
gallery includes a pickup coil located between its poles
to measure the time rate of change of the magnetic field
~̇B, which is an important input to the GMPS regulator.
Powered with the other gradient magnets and housed
in a low-radiation environment without charged particle
beam passing through it, this reference magnet provides
an accurate representation of the magnetic field under
control throughout the accelerator.

Timing information derived from ~̇B = 0 synchro-
nizes the GMPS regulator system to the minimum and
maximum values of the magnetic field and provides a
transistor-transistor-logic (TTL) based 15 Hz master

Reference system:
B coil, transductor, 
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FIG. 1. Schematic view of the GMPS control environment.
The human operator specifies a target program via the Ac-
celerator Control Network that is transmitted to the GMPS
control board. The FPGA-based control logic utilizes these
settings together with readings from a reference magnet to
prescribe a driving signal to the GMPS. The e↵ect of this
prescribed signal on the bending magnets is measured by an
in-series reference magnet, with sampled readings transmitted
back to the GMPS control board. Reference measurements
and prescribed signals may be logged and transmitted over
network for later analysis.

FIG. 2. A single 15 Hz cycle of the power supply program
voltage, from one minimum to the next.

clock signal that drives the timing system for the GMPS
regulator and indeed the rest of the accelerator complex.
The high-frequency sampled measurements near the min-
imum and maximum values of the magnetic field are au-
tomatically fitted each cycle, and the finite impulse re-
sponse (FIR) parameters are used as the primary feed-
back mechanism for the GMPS regulator system. Reduc-
ing the errors (the di↵erence between the target and real-
ized GMPS current especially at injection) of the GMPS
system is of primary concern in the operational perfor-
mance and e�ciency of the Booster. The following Sec-
tions discuss the details of the present and proposed reg-
ulation systems.

• At present, currents are adjusted w/ PID loops comparing using 
measurements from a reference magnet

Aim is to replace PID 
w/ ML controller
Allow for online training 
and reconfiguration

Will use Reinforcement 
Learning paradigm

Include more features 
(e.g. gallery temp, line 
voltage, MI program)
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TABLE II. Fermilab Booster surrogate model, which learns
to reproduce the environment in terms of the three time-
series variables, one of which determines the reward as given
in Eq. 4. The input LSTM layer receives five values, de-
scribing the current state B:IMINER, B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. The output layer is a prediction of B:IMINER,
B:LINFRQ, B:VIMIN.

Layer Layer Type Outputs Activation Parameters

1 LSTM 256 tanh 416,768

2 LSTM 256 tanh 525,312

3 LSTM 256 tanh 525,312

4 dense 3 linear 771

Total · · · · · · · · · 1,468,163

FIG. 6. Selected test data (blue) versus prediction values
(orange) from the Booster LSTM surrogate model.

Overlaid time series from the data and from LSTM pre-
dictions for a selected time window are shown in Fig. 6.
Based on the great similarity of these results, the surro-
gate model was deemed adequate to use for initial train-
ing of the RL policy model.

C. Reinforcement Learning for GMPS Control

For this study, we formulated the problem as an
episodic Markov decision process, where every episode
contains 50 time steps. As in all Q-learning, the agent
learns to maximize the reward within the time horizon of
an episode. We developed our RL workflow based on a
variant of DQN, the double DQN algorithm [37, 50, 51],

using Keras [48] to optimize B:VIMIN settings dynam-
ically to minimize GMPS error B:IMINER. The double
DQN explicitly decouples the target model, which is used
to evaluate actions, from the policy model, which is used
to select actions, although they take the same form.

We used the OpenAI gym package [52] to develop the
environment that serves as a wrapper around the virtual
accelerator complex model described above in Sec. V B to
interact with the RL agent. The observation state space
is defined by the aforementioned five variables in the vir-
tual complex model section, shown to causally relate to
B:IMINER. The action state space only contains one free
parameter of control: adjustments to B:VIMIN. Th seven
discrete control options relative to the previous B:VIMIN
are 0 (no change), ±0.0001, ±0.005, and ±0.001. The
choice of these values was based on the actual distribu-
tion of the changes in B:VIMIN observed in the data.

At the start of each episode, 150 time steps from the
data are used to initialize the system state, as is required
for the Booster surrogate model. The 150th step defines
the observation state used by the agent. For each step
thereafter, the agent provides a new action specified by
the change in B:VIMIN, and the system state is updated.
The new system state is then used to predict the next
B:IMINER. After the prediction, the system state is incre-
mented to the next time step. The current state, reward,
and status for each step is passed to the agent to be used
for training the DQN policy model.

During training, event samples are placed into a bu↵er
before calculating the loss. This memory bu↵er is sam-
pled randomly in a process called experience replay [37]
in order to remove instabilities found to arise from train-
ing on time-ordered samples. Once the memory bu↵er
has su�cient experiences (32 experiences for this study)
the active policy model begins training and continuously
updating. We use the ✏-greedy [53] method to control
the agent’s tradeo↵ between exploration (random choice
of action) and exploitation (deterministic action dictated
by the current policy), in which the optimal action ac-
cording to the current policy is chosen with probability ✏,
while a random action is selected with probability 1 � ✏.
At the beginning of the training session we set ✏ = 1 with
a decay factor of 0.9995, applied multiplicatively when-
ever an exploration action is selected, until a minimum
value of ✏ = 0.0025 is reached. For this study, we use a
multilayer perceptron (MLP) as the policy model archi-
tecture, and rectified linear unit (ReLU) activation func-
tions [54], as summarized in Table VIA.The active policy
model is continuously updated during training by using
randomly selected experiences from the memory bu↵er.
At each training step the weights of the target model
✓target are incrementally updated to reflect the weights
of the active policy model ✓policy,

✓target 7! ✓target(1 � ⌧) + ⌧✓policy, (8)

where we set ⌧ = 0.5 [40].
RL algorithms learn from the reward provided by the

environment, which in this study is given by Eqn. 4.
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FIG. 7. Total reward per episode versus number of training
episodes for the DQN MLP algorithm (solid red line). The
pink band is the approximate 68% central confidence interval
(1�� where � is the standard deviation) of the rolling average
over 50 episodes and the dashed line is the performance of the
current system. Given the fixed history for evaluation, the
current controller reward does not vary as a function of the
episode number.

Additionally, we impose a penalty term if B:VIMIN and
B:IMINER go outside of the defined parameter space. The
penalty term is proportional to the number of steps taken
to ensure that the agent learns to perform the necessary
steps in one episode.

The result of the DQN MLP training, in terms of the
total reward per episode versus the number of training
episodes, is shown in Fig. 7. In this proof-of-concept
study, each episode is initialized with the same 150 time
steps. The current controller reward, the black dashed
line, was determined using the data by summing the val-
ues of Rt = �|B:IMINER(t)| for the same 150 time steps
used to initialize the RL loop, and thus given the fixed
history does not vary as a function of the episode num-
ber. Additionally, the current controller reward value
was compared to the reward associated with the actual
controller action (B:VIMIN) within the RL loop, and was
within 5% of this real value. The DQN MLP controller
reward, the solid red line, shows steady improvements
during training and converges to approximately a factor
of 2 improvement over the current system.

VI. IMPLEMENTATION IN FAST
ELECTRONICS

Fast GMPS control electronics are required to col-
lect information from the Booster environment, decide
whether to apply a corrective action, and distribute the
corresponding control signal, all with low latency. An

FPGA is a natural choice to implement the corresponding
circuit, accommodating latencies far below those achiev-
able with a CPU or GPU while allowing reconfigurability
impossible in a custom application-specific integrated cir-
cuit (ASIC) solution. The DQN MLP control model pro-
posed in Section V C requires an e�cient, but adjustable,
implementation of NN algorithms, strongly suggesting an
FPGA-based implementation. As a preliminary step, we
take the o✏ine-trained DQN MLP with weights fixed and
deploy it in an FPGA.

The following subsections review the computational
steps required for a single NN inference (§VI A); describe
the basic elements of an FPGA and how a deep NN cal-
culation can be e�ciently mapped to a corresponding
circuit (§VI B); present an implementation of the DQN
MLP described above in Section V and the impact of
various design choices (§VI C); and lastly discuss possible
extensions of the implementation to accommodate more
complex algorithms which are of interest (§VI D).

A. Elements of NN inference

The structure of an MLP is a series of alternating lin-
ear and nonlinear transformations (layers), with the ith
layer mapping a set of inputs xi (features) to a discrete
list of outputs yi. In the present application, the fea-
tures may include any measurements of the GMPS en-
vironment, such as digitized traces from the reference
magnet system, line voltage frequency, and equipment
gallery temperature. For the DQN MLP, the outputs
yi are scores associated to a discrete set of possible ac-
tions, with the highest-scoring action being the one taken
by the controller. An MLP layer f yielding m outputs
may be written in terms of its action on a set of inputs
{xi}i=1,...,n as

f : xi ! �

 
X

i

wijxi + bj

!
, (9)

where wij (the n ⇥ m weight matrix) and bj (the m-
dimensional bias vector) are configurable parameters of
the linear translation and � is an m-to-m nonlinear acti-
vation function. For each layer, the activation function is
prescribed as a part of the model architecture while opti-
mal values for the weights and biases are found through
a training procedure. The DQN MLP utilizes the linear
(identity) ReLU(xi) = max(xi, 0) activation functions.
The complete, k-layer NN is specified by an ordered com-
position of layers y = f (1)f (2) . . . f (k)(x). While the in-
put and output dimensions are fixed by the set of features
and actions, the dimensionality of intermediate layers is
arbitrary. Table VI A describes the architecture of the
DQN MLP, in addition to the number of configurable pa-
rameters and total multiply-and-accumulate (MAC) op-
erations required.
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48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St � S, and on that basis selects an action, At � A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 � R � R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s�

� S and r � R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s�, r |s, a)
.
= Pr{St =s�, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s�, s � S, r � R, and a � A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

FIG. 4. The agent-environment interaction in a Markov de-
cision process [36]. The agent executes a policy that selects
an action At given the current St, which results in a reward
Rt+1 and a new state St+1 of the environment.

makes use of both MLP and RNN architectures.
For a given architecture with its activation functions,

the weights and biases are the parameters being adjusted
in the optimization or “training.” The “learning rate”
sets the proportionality of parameter adjustment to gra-
dients of improved performance (based on lower loss or
higher reward).

RL is the subfield of AI aimed at optimizing of con-
trol or planning of complex tasks based on feedback in-
puts from an environment, as explained below. The main
components of RL are the environment and the agent, a
ML model, as illustrated in Fig. 4. RL trains a model
over many time steps, and the resulting model may then
be taken as fixed, to be deployed on new data; the model
may be expected to perform similarly on new data as it
did in training, if the dynamics of the new data were well
represented in the training data. However RL extends
naturally to continuous online learning, which would al-
low our regulator to adapt to changing environmental dy-
namics such as seasonality or new modes of accelerator
complex operation, even though we would initially deploy
a static or infrequently updated model out of prudence.
We set out to use RL to train an optimal regulation pol-
icy dictating which action the GMPS regulator should
take in any given state of the system.

The environment, usually formulated as a Markov
decision process (MDP), is represented by a time-
independent, discrete system with which the RL agent
interacts (e.g. the accelerator complex). For the regula-
tion of the GMPS current minimum, the environment
includes the time-varying outside influences for which
the GMPS regulator makes compensating changes. At
each time step t, the environment takes in the control
action At determined by the RL agent based on the cur-
rent state St, and provides the new system state St+1

(e.g. settings and measured quantities) along with an
associated reward Rt+1. Optimizing the agent’s policy
actions is defined to mean maximizing the long-term in-
tegrated reward. In this study, the reward is calculated
from the error in the minimum value of the GMPS cur-
rent, B:IMINER:

Rt = �|B:IMINER(t)| . (4)

The larger the magnitude of B:IMINER, the lower the re-

ward. The possible actions At we consider correspond to
adjusting the value of B:VIMIN, the lone control variable.

Recently, significant progress has been made in RL by
combining it with advances in deep learning. Deep learn-
ing models are well suited to representing complex poli-
cies for high-dimensional problems such as regulation in a
dynamically variable environment. The deep Q-network
(DQN) [37, 38] approach, which we adopt for this study,
involves using a deep neural network to learn the action-
value function, or Q-value, and is usually deployed in
environments that take discrete control actions. The op-
timal policy can then be derived by choosing the action
that maximizes the expected Q-value.

More formally, a policy ⇡ is used by an agent to decide
what actions At = ⇡(St) to take given a state St at time
t. An optimal policy ⇡⇤ maximizes the Q-value,

Q(St, At) =
TX

t0=t

E
h
�t0�tR(St0 , At0)|St, At

i
, (5)

where E is the expectation value operator, Rt ⌘

R(St, At) is the reward at time t, and � is the dis-
count factor that de-emphasizes future rewards relative
to present ones. For this study, a value of � = 0.85
was found to be performant. The Q-value is the sum of
the expected discounted rewards from the current time
t up to the horizon T . In practice, the optimal action-
value function Q⇤ is not known a priori, but it can be
approximated iteratively because it satisfies the Bellman
equation [39],

Q⇤(St, At) = E
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(6)
In a DQN, the Q-value is approximated using a deep

neural network, or policy model, with parameters ✓. In
particular, the loss function at a time t is given by the
mean squared error (MSE) in the Bellman equation,
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where the (unknown) optimal target values are re-
placed by the approximate target values yt = Rt +
� maxAt+1 Q(St+1, At+1; ✓
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t ) using parameters ✓�

t de-
rived from previous iterations.

A. Control action discretization

Continuous action space environments, such as the
compensating adjustments of our GMPS current regula-
tor, can use the DQN algorithm by discretizing the action
space directly. However, this approach scales poorly be-
cause the number of samples required to estimate the op-
timal policy (compensating setting of B:VIMIN) at some
fixed accuracy grows exponentially with the number of
input variables. To avoid this, we discretize instead the
change of control signal B:VIMIN using steps of just a few
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these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St � S, and on that basis selects an action, At � A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 � R � R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s�

� S and r � R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s�, r |s, a)
.
= Pr{St =s�, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s�, s � S, r � R, and a � A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

FIG. 4. The agent-environment interaction in a Markov de-
cision process [36]. The agent executes a policy that selects
an action At given the current St, which results in a reward
Rt+1 and a new state St+1 of the environment.

makes use of both MLP and RNN architectures.
For a given architecture with its activation functions,

the weights and biases are the parameters being adjusted
in the optimization or “training.” The “learning rate”
sets the proportionality of parameter adjustment to gra-
dients of improved performance (based on lower loss or
higher reward).

RL is the subfield of AI aimed at optimizing of con-
trol or planning of complex tasks based on feedback in-
puts from an environment, as explained below. The main
components of RL are the environment and the agent, a
ML model, as illustrated in Fig. 4. RL trains a model
over many time steps, and the resulting model may then
be taken as fixed, to be deployed on new data; the model
may be expected to perform similarly on new data as it
did in training, if the dynamics of the new data were well
represented in the training data. However RL extends
naturally to continuous online learning, which would al-
low our regulator to adapt to changing environmental dy-
namics such as seasonality or new modes of accelerator
complex operation, even though we would initially deploy
a static or infrequently updated model out of prudence.
We set out to use RL to train an optimal regulation pol-
icy dictating which action the GMPS regulator should
take in any given state of the system.

The environment, usually formulated as a Markov
decision process (MDP), is represented by a time-
independent, discrete system with which the RL agent
interacts (e.g. the accelerator complex). For the regula-
tion of the GMPS current minimum, the environment
includes the time-varying outside influences for which
the GMPS regulator makes compensating changes. At
each time step t, the environment takes in the control
action At determined by the RL agent based on the cur-
rent state St, and provides the new system state St+1

(e.g. settings and measured quantities) along with an
associated reward Rt+1. Optimizing the agent’s policy
actions is defined to mean maximizing the long-term in-
tegrated reward. In this study, the reward is calculated
from the error in the minimum value of the GMPS cur-
rent, B:IMINER:

Rt = �|B:IMINER(t)| . (4)

The larger the magnitude of B:IMINER, the lower the re-

ward. The possible actions At we consider correspond to
adjusting the value of B:VIMIN, the lone control variable.

Recently, significant progress has been made in RL by
combining it with advances in deep learning. Deep learn-
ing models are well suited to representing complex poli-
cies for high-dimensional problems such as regulation in a
dynamically variable environment. The deep Q-network
(DQN) [37, 38] approach, which we adopt for this study,
involves using a deep neural network to learn the action-
value function, or Q-value, and is usually deployed in
environments that take discrete control actions. The op-
timal policy can then be derived by choosing the action
that maximizes the expected Q-value.

More formally, a policy ⇡ is used by an agent to decide
what actions At = ⇡(St) to take given a state St at time
t. An optimal policy ⇡⇤ maximizes the Q-value,

Q(St, At) =
TX

t0=t

E
h
�t0�tR(St0 , At0)|St, At

i
, (5)

where E is the expectation value operator, Rt ⌘

R(St, At) is the reward at time t, and � is the dis-
count factor that de-emphasizes future rewards relative
to present ones. For this study, a value of � = 0.85
was found to be performant. The Q-value is the sum of
the expected discounted rewards from the current time
t up to the horizon T . In practice, the optimal action-
value function Q⇤ is not known a priori, but it can be
approximated iteratively because it satisfies the Bellman
equation [39],

Q⇤(St, At) = E

Rt + � max

At+1

Q⇤(St+1, At+1)|St, At

�
.

(6)
In a DQN, the Q-value is approximated using a deep

neural network, or policy model, with parameters ✓. In
particular, the loss function at a time t is given by the
mean squared error (MSE) in the Bellman equation,

Lt(✓t) = E
⇥
(yt � Q(St, At; ✓t))

2
⇤

, (7)

where the (unknown) optimal target values are re-
placed by the approximate target values yt = Rt +
� maxAt+1 Q(St+1, At+1; ✓

�
t ) using parameters ✓�

t de-
rived from previous iterations.

A. Control action discretization

Continuous action space environments, such as the
compensating adjustments of our GMPS current regula-
tor, can use the DQN algorithm by discretizing the action
space directly. However, this approach scales poorly be-
cause the number of samples required to estimate the op-
timal policy (compensating setting of B:VIMIN) at some
fixed accuracy grows exponentially with the number of
input variables. To avoid this, we discretize instead the
change of control signal B:VIMIN using steps of just a few
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these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.
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of the environment’s state, St � S, and on that basis selects an action, At � A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 � R � R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:
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In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s�
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of those values occurring at time t, given particular values of the preceding state and
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for all s�, s � S, r � R, and a � A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
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the weights and biases are the parameters being adjusted
in the optimization or “training.” The “learning rate”
sets the proportionality of parameter adjustment to gra-
dients of improved performance (based on lower loss or
higher reward).

RL is the subfield of AI aimed at optimizing of con-
trol or planning of complex tasks based on feedback in-
puts from an environment, as explained below. The main
components of RL are the environment and the agent, a
ML model, as illustrated in Fig. 4. RL trains a model
over many time steps, and the resulting model may then
be taken as fixed, to be deployed on new data; the model
may be expected to perform similarly on new data as it
did in training, if the dynamics of the new data were well
represented in the training data. However RL extends
naturally to continuous online learning, which would al-
low our regulator to adapt to changing environmental dy-
namics such as seasonality or new modes of accelerator
complex operation, even though we would initially deploy
a static or infrequently updated model out of prudence.
We set out to use RL to train an optimal regulation pol-
icy dictating which action the GMPS regulator should
take in any given state of the system.

The environment, usually formulated as a Markov
decision process (MDP), is represented by a time-
independent, discrete system with which the RL agent
interacts (e.g. the accelerator complex). For the regula-
tion of the GMPS current minimum, the environment
includes the time-varying outside influences for which
the GMPS regulator makes compensating changes. At
each time step t, the environment takes in the control
action At determined by the RL agent based on the cur-
rent state St, and provides the new system state St+1

(e.g. settings and measured quantities) along with an
associated reward Rt+1. Optimizing the agent’s policy
actions is defined to mean maximizing the long-term in-
tegrated reward. In this study, the reward is calculated
from the error in the minimum value of the GMPS cur-
rent, B:IMINER:

Rt = �|B:IMINER(t)| . (4)

The larger the magnitude of B:IMINER, the lower the re-

ward. The possible actions At we consider correspond to
adjusting the value of B:VIMIN, the lone control variable.

Recently, significant progress has been made in RL by
combining it with advances in deep learning. Deep learn-
ing models are well suited to representing complex poli-
cies for high-dimensional problems such as regulation in a
dynamically variable environment. The deep Q-network
(DQN) [37, 38] approach, which we adopt for this study,
involves using a deep neural network to learn the action-
value function, or Q-value, and is usually deployed in
environments that take discrete control actions. The op-
timal policy can then be derived by choosing the action
that maximizes the expected Q-value.

More formally, a policy ⇡ is used by an agent to decide
what actions At = ⇡(St) to take given a state St at time
t. An optimal policy ⇡⇤ maximizes the Q-value,
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where E is the expectation value operator, Rt ⌘

R(St, At) is the reward at time t, and � is the dis-
count factor that de-emphasizes future rewards relative
to present ones. For this study, a value of � = 0.85
was found to be performant. The Q-value is the sum of
the expected discounted rewards from the current time
t up to the horizon T . In practice, the optimal action-
value function Q⇤ is not known a priori, but it can be
approximated iteratively because it satisfies the Bellman
equation [39],

Q⇤(St, At) = E

Rt + � max

At+1

Q⇤(St+1, At+1)|St, At

�
.

(6)
In a DQN, the Q-value is approximated using a deep

neural network, or policy model, with parameters ✓. In
particular, the loss function at a time t is given by the
mean squared error (MSE) in the Bellman equation,
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A. Control action discretization

Continuous action space environments, such as the
compensating adjustments of our GMPS current regula-
tor, can use the DQN algorithm by discretizing the action
space directly. However, this approach scales poorly be-
cause the number of samples required to estimate the op-
timal policy (compensating setting of B:VIMIN) at some
fixed accuracy grows exponentially with the number of
input variables. To avoid this, we discretize instead the
change of control signal B:VIMIN using steps of just a few
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FIG. 8. Separate histograms display the magnitude of
the floating-point weights obtained for each many-to-many
(“dense”) layer after training the DQN MLP, in bins of
logarithmically-varying width. Over 99% of weights are found
to have absolute value greater than 1/29, with a maximum
value of 2.16.

FIG. 9. The fraction of decisions that the quantized NN im-
plementation shares with the floating-point calculation across
a set of representative input Booster data is shown as a func-
tion of the fixed-point precision. Here the number of bits to
encode the integer part is fixed to five plus a sign bit, while
the number of bits encoding the fractional part is varied. The
inset shows the same measurements, highlighting the region
where the shared action fraction is over 90%. At very low
precision, statistical fluctuations are observed that depend on
the specific model weights and rounding conventions.

ence in comparison with the total available resources on
the target FPGA. One constraint comes from the MAC
operations that are e�ciently computed in a single clock
cycle using dedicated DSP slices for each operation. As
discussed in Section VI A, the MLP agent requires 6944
MACs per inference, compared to the 1518 DSP slices
available in the Arria 10 FPGA. The approach taken to

FIG. 10. FPGA resources required for the implementation
of the DQN MLP are shown as a function of the fixed-point
precision utilized for internal NN operations. All resources
are normalized to the total available in a benchmark Arria 10
device (see Table VI C). Results are shown for implementa-
tions with reuse factors of 128 (solid lines) and 1568 (dashed
lines).

address this is to assign a reuse factor to each NN layer,
specifying the number of operations each physical MAC
unit may contribute to the set of necessary computations
required by that layer. Larger reuse factors will result in
a design utilizing fewer FPGA resources at the expense of
longer inference latency. For simplicity a single, model-
level reuse factor is considered in the following, where
the per-layer reuse factor is given by the greatest com-
mon divisor of the reuse factor and the product of input
and output multiplicity.

Figure 10 demonstrates how the resources required to
implement the NN algorithm are a↵ected by the precision
to which internal calculations are carried out, and the
degree of parallelization specified by the selected reuse
factor. In general, the required low-level resources such
as ALMs and registers scale linearly with precision to
accommodate the widths of increasing data paths. Con-
versely, a single DSP slice can accommodate a range of
operand bit-widths, up to the limit of the design spec-
ification at which point a second DSP must be used
per calculation. In the case of reuse factor of 128, the
largest burden on FPGA resources comes from the re-
quired DSPs (either 4 or 8% of the Arria 10 total, de-
pending on the necessary precision), while ALMs are the
limiting factor (3–8%) in the case of reuse factor of 1568,
where the design parallelization is at most a factor of four
in each NN layer. While inference latency depends on the
degree of parallelism directly through the reuse factor, it
is essentially invariant under changes to the operand pre-
cision.

Table VI C compares several implementations for con-
stant precision (20 total bits) and various reuse factors.
In general the algorithm latency increases as a function

• Target board: Intel Arria10
• Quartus implementation using 

hls4ml developed w/ much help 
from H. Javed + Intel folks

• Initially: 1 model, frozen weights

Precision 
optimization Optimized weight, operand precision 

comparing agent’s decisions to 
predictions using floats
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TABLE III. Implemented DQN MLP model architecture. The
first NN layer receives five input values.

Layer Outputs Activation Parameters MACs

1 56 ReLU 336 280

2 56 ReLU 3192 3136

3 56 ReLU 3192 3136

4 7 Linear 399 392

Total · · · · · · 7119 6944

B. NN inference on FPGAs

An FPGA consists of an array of logic gates that may
be programmed to emulate any circuit (up to the physi-
cal resource constraints of the specific hardware device).
This allows FPGA designs to profit from the many ad-
vantages of custom ASICs including massive paralleliza-
tion and low power consumption while maintaining re-
configurability. However, a significant advantage of the
FPGA architecture lies in the fact that it is not sim-
ply a homogeneous fabric of low-level gates (e.g. NAND
gates). Rather, modern FPGAs are heterogeneous struc-
tures including more complex logical blocks, each spe-
cialized for a dedicated task, repeated many times. In
this way, FPGA designs can simultaneously exploit both
the flexibility of a programmable architecture and the
performance of a dedicated printed circuit.

An e�cient implementation of the NN model in
firmware requires a design that exploits the FPGA’s spe-
cialized computational units to perform each step of the
NN calculation. Digital signal processor (DSP) slices are
flexible circuits for addition, multiplication, wide-array
bitwise logical operations, and more. DSPs may be fur-
ther chained to accommodate more complex operations.
In the Intel Arria 10 FPGA, to be deployed in the GMPS
control system, DSP blocks may be configured to multi-
ply and accumulate fixed-point numbers up to 27 bits,
providing a solution for the linear component of Equa-
tion 9. The a�ne map from m to n dimensions requires
mn scalar multiplications and sums that, in a fully par-
allelized design, may be accomplished with mn cascad-
ing DSPs. To evaluate an arbitrarily complex activation
function in FPGAs, it is more e�cient to store a pre-
computed table of values than to re-calculate the func-
tion many times per inference. This may be accomplished
using block RAM (BRAM), embedded memory that is
configurable for read/write access. BRAMs are available
in segments of 20 kb in the Arria 10 to store, for exam-
ple, a bank of 1024 function values at 20-bit precision.
Registers are groups of flip flops used to record tempo-
rary numerical values or internal states, and to facilitate
signal routing across the major computational blocks of
the design. Finally, ALMs are lightweight, configurable
modules of combinational logic elements, used through-
out designs for basic operations such as simple arithmetic

and logical operations.

C. Implementation of the GMPS control model

The GMPS control model described in Section V must
be converted to firmware in a manner that takes full ad-
vantage of the FPGA’s architectural features described
in Section VIB. This is accomplished through the trans-
lation of the Keras description of the NN function into
high-level synthesis (HLS) code using the hls4ml [55]
toolkit, whose functionality has been recently extended
to Intel FPGAs [56]. The HLS design is converted to
firmware using Intel Quartus [57]. The use of hls4ml

brings the significant advantage of enabling a fast devel-
opment cycle from model prototyping to implementation
in firmware. Thus, the present work has focused not only
on achieving an optimal design for the benchmark ML al-
gorithm proposed in Section VC but also on more generic
design-space exploration. Establishing scalable strategies
such as FPGA implementation is critical for scaling up
to more complex ML models that will inevitably become
necessary as larger data sets allow for increasingly nu-
anced treatments of the control problem.

The conversion of the Keras model to firmware requires
a number of design choices. Chief among these are the
numerical precision to which the calculation is carried
out and the degree of parallelism incorporated into the
design. Fixed-point values with a specified number of
total and integer bits are used to represent model inputs,
weights, and all intermediate results of the calculation.
To determine the range of values to encode in the fixed-
point representation, the number of integer bits is set
to be at least as large as the maximum weight value.
The number of total bits, which sets the number of bits
used to encode the fractional component of the weight
(once the integer part is specified), is set to minimize the
impact of quantization.

Figure 8 displays a histogram of the weight values for
the trained DQN MLP model. The total number of
bits retained for each weight is selected by comparing
the floating-point model inference with that of the fixed-
point model for a range of bit widths, scanning over a
representative sample of input test data. Figure 9 shows
that using 14 bits to encode the fractional component of
all operands is su�cient to replicate the decision taken by
the floating-point model for over 99.5% of the test data.
This performance comparison of fixed and floating-point
models shows that while nine fractional bits are su�-
ciently precise to represent the weights, additional preci-
sion in the representation of the intermediate sums in the
NN calculation is necessary to achieve full performance.
Following this, comparisons were performed using a 20-
bit representation for all internal fixed-point parameters
(5 integer bits, 14 fractional bits, and a sign bit) where
not explicitly varied.

The degree of design parallelization can be motivated
by the number of operations required for each NN infer-

3-layer MLP agent arch
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FIG. 8. Separate histograms display the magnitude of
the floating-point weights obtained for each many-to-many
(“dense”) layer after training the DQN MLP, in bins of
logarithmically-varying width. Over 99% of weights are found
to have absolute value greater than 1/29, with a maximum
value of 2.16.

FIG. 9. The fraction of decisions that the quantized NN im-
plementation shares with the floating-point calculation across
a set of representative input Booster data is shown as a func-
tion of the fixed-point precision. Here the number of bits to
encode the integer part is fixed to five plus a sign bit, while
the number of bits encoding the fractional part is varied. The
inset shows the same measurements, highlighting the region
where the shared action fraction is over 90%. At very low
precision, statistical fluctuations are observed that depend on
the specific model weights and rounding conventions.

ence in comparison with the total available resources on
the target FPGA. One constraint comes from the MAC
operations that are e�ciently computed in a single clock
cycle using dedicated DSP slices for each operation. As
discussed in Section VI A, the MLP agent requires 6944
MACs per inference, compared to the 1518 DSP slices
available in the Arria 10 FPGA. The approach taken to

FIG. 10. FPGA resources required for the implementation
of the DQN MLP are shown as a function of the fixed-point
precision utilized for internal NN operations. All resources
are normalized to the total available in a benchmark Arria 10
device (see Table VI C). Results are shown for implementa-
tions with reuse factors of 128 (solid lines) and 1568 (dashed
lines).

address this is to assign a reuse factor to each NN layer,
specifying the number of operations each physical MAC
unit may contribute to the set of necessary computations
required by that layer. Larger reuse factors will result in
a design utilizing fewer FPGA resources at the expense of
longer inference latency. For simplicity a single, model-
level reuse factor is considered in the following, where
the per-layer reuse factor is given by the greatest com-
mon divisor of the reuse factor and the product of input
and output multiplicity.

Figure 10 demonstrates how the resources required to
implement the NN algorithm are a↵ected by the precision
to which internal calculations are carried out, and the
degree of parallelization specified by the selected reuse
factor. In general, the required low-level resources such
as ALMs and registers scale linearly with precision to
accommodate the widths of increasing data paths. Con-
versely, a single DSP slice can accommodate a range of
operand bit-widths, up to the limit of the design spec-
ification at which point a second DSP must be used
per calculation. In the case of reuse factor of 128, the
largest burden on FPGA resources comes from the re-
quired DSPs (either 4 or 8% of the Arria 10 total, de-
pending on the necessary precision), while ALMs are the
limiting factor (3–8%) in the case of reuse factor of 1568,
where the design parallelization is at most a factor of four
in each NN layer. While inference latency depends on the
degree of parallelism directly through the reuse factor, it
is essentially invariant under changes to the operand pre-
cision.

Table VI C compares several implementations for con-
stant precision (20 total bits) and various reuse factors.
In general the algorithm latency increases as a function
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TABLE IV. The required FPGA resources and corresponding
latency for the NN algorithm is shown for three possible im-
plementations corresponding to various reuse factors. In ad-
dition to design parameters, the maximum available resources
are shown for an Intel Arria 10 benchmark FPGA. Memory
logic array blocks (MLABs) are configured from ten ALMs
and hence no device maximum is shown.

reuse factor DSP BRAM MLAB ALM Register Latency

128 130 114 229 21.4 k 51.2 k 2.8µs

224 74 100 1420 40.2 k 78.3 k 4.1µs

1568 26 38 357 24.9 k 54.9 k 17.2µs

Available 1518 2713 · · · 427 k 1.7 M · · ·

of increasing reuse factor while the numbers of DSPs and
BRAMs required are inversely proportional to the reuse
factor. Variations in the required registers and ALMs
are generally not significant by comparison. These re-
sults demonstrate a range of feasible firmware implemen-
tations of the algorithm that fit within the resource and
latency budget of the GMPS control board. The ability
to tune resource usage provides significant flexibility to
accommodate potential future scenarios where the NN
algorithm will inevitably coexist on a single FPGA with
additional control logic that may present inflexible re-
source constraints of its own.

D. Extensions to more complex algorithms

Up to this point, the discussion of the hardware im-
plementation has centered around the three-hidden-layer
MLP architecture found to be performant for the GMPS
control problem in the context of RL studies described
in Section V. However, the conclusions of the studies de-
scribed above may be extended to more complex NN
algorithms providing improved GMPS performance in
tandem with the experience gained through future data-
taking campaigns.

The simplest extension to the single MLP solution,
well-motivated in the context of RL studies, is to run
inference with an ensemble of multiple copies of the net-
work in parallel on the FPGA, to improve robustness
of performance. Each NN may be programmed with a
unique set of weights, allowing for disagreement among
the models, where additional voter logic determines the
final action to be taken by the control system. This is
straightforward to achieve for models with similar com-
plexity to the one studied in Section VI C. Achieving de-
signs that consume 6% of all available resources sug-
gests that an ensemble of O(10) models is feasible.

Alternatively, instead of an ensemble of relatively sim-
ple models, more complex networks can be pursued. The
MLP architecture studied can be extended to additional
layers and larger numbers of nodes per layer maintain-
ing an acceptable footprint through corresponding ad-

justment of the reuse factor. The theoretical scaling be-
havior was shown in the calculations of Section VIA and
observed in the implementation using Quartus HLS. As
an illustrative example, one could consider a refinement
of the baseline architecture where the number of nodes
per layer is uniformly increased by a scaling factor s.
In this case, the number of required multipliers may be
kept constant by simultaneously increasing the reuse fac-
tor by a factor of s2, at the expense of a corresponding
increase in algorithm latency. More sophisticated archi-
tectures such as convolutional and recurrent NNs may
also be considered, taking advantage of their represen-
tations as compositions of multiple dense sub-layers. A
detailed study of such possibilities is left to future work.

VII. SUMMARY AND OUTLOOK

In this paper, we have described a method for con-
trolling the gradient magnet power supply (GMPS), an
important subsystem of the Fermilab Booster accelera-
tor, using machine learning models and demonstrated
the feasibility of embedding such a model on a field-
programmable gate array (FPGA) for a high-uptime,
low-latency implementation. We first developed a surro-
gate LSTM model, based on a recurrent neural network,
to reproduce the behaviors of the real GMPS system in
the context of the accelerator complex, establishing a
safe environment for training reinforcement learning al-
gorithms. Within this environment, we trained a deep
Q-network, based on a multilayer perceptron, to choose
an optimal action (adjustment of one control knob) to
maximize the long-term reward, taken from the negative
absolute value of the regulation error (di↵erence between
the set and observed values of the minimum GMPS cur-
rent). We found this surrogate-trained network achieved
a factor of 2 improvement over the existing controller in
terms of the achieved rewards. Finally, we implemented
this network on an Intel Arria 10 FPGA and found it re-
produces the CPU-based model, consumes less than 6%
of the total FPGA resources, and executes with a latency
as low as 2.8 µs, which bodes well for future extensions.

Real-time and operations-hardened solutions will be
critical for deploying this technology in an accelerator
control context, but we believe a large number of other
application spaces will be able to benefit from reinforce-
ment learning on embedded systems. Surrogate models
appear promising for supplying the large training data
volumes required by reinforcement learning agents. This
is particularly important for accelerator facilities where
large-scale simulations of the entire complex are absent.
Although many open questions remain, this proof-of-
principle provides confidence to test our proposed con-
cept on “live” hardware. The next steps of this work,
including mechanisms for online training and model up-
dates for systems operating with a running accelerator,
will be the subject of a future report.

In general, the future for machine learning algorithms

Studied range of choices, with 
emphasis on 'highly-serial’ designs.
~5% usage →O(10) MLP ensemble

• Ensemble of agent models (same arch, different weights) allows 
a more robust controller → pref for many, lightweight models
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TABLE III. Implemented DQN MLP model architecture. The
first NN layer receives five input values.

Layer Outputs Activation Parameters MACs

1 56 ReLU 336 280

2 56 ReLU 3192 3136

3 56 ReLU 3192 3136

4 7 Linear 399 392

Total · · · · · · 7119 6944

B. NN inference on FPGAs

An FPGA consists of an array of logic gates that may
be programmed to emulate any circuit (up to the physi-
cal resource constraints of the specific hardware device).
This allows FPGA designs to profit from the many ad-
vantages of custom ASICs including massive paralleliza-
tion and low power consumption while maintaining re-
configurability. However, a significant advantage of the
FPGA architecture lies in the fact that it is not sim-
ply a homogeneous fabric of low-level gates (e.g. NAND
gates). Rather, modern FPGAs are heterogeneous struc-
tures including more complex logical blocks, each spe-
cialized for a dedicated task, repeated many times. In
this way, FPGA designs can simultaneously exploit both
the flexibility of a programmable architecture and the
performance of a dedicated printed circuit.

An e�cient implementation of the NN model in
firmware requires a design that exploits the FPGA’s spe-
cialized computational units to perform each step of the
NN calculation. Digital signal processor (DSP) slices are
flexible circuits for addition, multiplication, wide-array
bitwise logical operations, and more. DSPs may be fur-
ther chained to accommodate more complex operations.
In the Intel Arria 10 FPGA, to be deployed in the GMPS
control system, DSP blocks may be configured to multi-
ply and accumulate fixed-point numbers up to 27 bits,
providing a solution for the linear component of Equa-
tion 9. The a�ne map from m to n dimensions requires
mn scalar multiplications and sums that, in a fully par-
allelized design, may be accomplished with mn cascad-
ing DSPs. To evaluate an arbitrarily complex activation
function in FPGAs, it is more e�cient to store a pre-
computed table of values than to re-calculate the func-
tion many times per inference. This may be accomplished
using block RAM (BRAM), embedded memory that is
configurable for read/write access. BRAMs are available
in segments of 20 kb in the Arria 10 to store, for exam-
ple, a bank of 1024 function values at 20-bit precision.
Registers are groups of flip flops used to record tempo-
rary numerical values or internal states, and to facilitate
signal routing across the major computational blocks of
the design. Finally, ALMs are lightweight, configurable
modules of combinational logic elements, used through-
out designs for basic operations such as simple arithmetic

and logical operations.

C. Implementation of the GMPS control model

The GMPS control model described in Section V must
be converted to firmware in a manner that takes full ad-
vantage of the FPGA’s architectural features described
in Section VIB. This is accomplished through the trans-
lation of the Keras description of the NN function into
high-level synthesis (HLS) code using the hls4ml [55]
toolkit, whose functionality has been recently extended
to Intel FPGAs [56]. The HLS design is converted to
firmware using Intel Quartus [57]. The use of hls4ml

brings the significant advantage of enabling a fast devel-
opment cycle from model prototyping to implementation
in firmware. Thus, the present work has focused not only
on achieving an optimal design for the benchmark ML al-
gorithm proposed in Section VC but also on more generic
design-space exploration. Establishing scalable strategies
such as FPGA implementation is critical for scaling up
to more complex ML models that will inevitably become
necessary as larger data sets allow for increasingly nu-
anced treatments of the control problem.

The conversion of the Keras model to firmware requires
a number of design choices. Chief among these are the
numerical precision to which the calculation is carried
out and the degree of parallelism incorporated into the
design. Fixed-point values with a specified number of
total and integer bits are used to represent model inputs,
weights, and all intermediate results of the calculation.
To determine the range of values to encode in the fixed-
point representation, the number of integer bits is set
to be at least as large as the maximum weight value.
The number of total bits, which sets the number of bits
used to encode the fractional component of the weight
(once the integer part is specified), is set to minimize the
impact of quantization.

Figure 8 displays a histogram of the weight values for
the trained DQN MLP model. The total number of
bits retained for each weight is selected by comparing
the floating-point model inference with that of the fixed-
point model for a range of bit widths, scanning over a
representative sample of input test data. Figure 9 shows
that using 14 bits to encode the fractional component of
all operands is su�cient to replicate the decision taken by
the floating-point model for over 99.5% of the test data.
This performance comparison of fixed and floating-point
models shows that while nine fractional bits are su�-
ciently precise to represent the weights, additional preci-
sion in the representation of the intermediate sums in the
NN calculation is necessary to achieve full performance.
Following this, comparisons were performed using a 20-
bit representation for all internal fixed-point parameters
(5 integer bits, 14 fractional bits, and a sign bit) where
not explicitly varied.

The degree of design parallelization can be motivated
by the number of operations required for each NN infer-

• Target board: Intel Arria10
• Quartus implementation using 

hls4ml developed w/ much help 
from H. Javed + Intel folks

• Initially: 1 model, frozen weights
3-layer MLP agent arch
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Next steps + Collaborators
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Jason St. John, 
Christian Herwig, 
Diane Kafkes,
Bill Pelico,
Gabe Perdue

Rachel 
KellerLucy Huang, 

Malachi Schram

Andres Quintero-
Parra,
Brian Schupbach, 
Kiyomi Seiya,
Nhan Tran, 

Review current 
training 
environments

Javier Duarte

• For many more results & details, see arXiv:2011.07371
• Exciting possibilities for ensembles, live-training and 

reconfiguration to explore.
• Due to the closure of accelerator facilities in 2020, 

deployment in Booster complex so far impossible
• Looking ahead to data results in 2021!

https://arxiv.org/abs/2011.07371
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Performance of present system

12

B:IMINER

B:VIMIN

+/-5% err

B:VIMAX

+/-0.05% err

• Goal is to reduce the error to +/-0.025%
• Beam orbit change will be less than 1mm at injection

Without feedback With present 
feedback system
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Reinforcement Learning paradigm
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Agent Environment

action

response, reward

• Agent: Model prescribes Imin(t1) = Func(Imin(t0), Temp,…)
• Environment: Booster reacts to GMPS prescription, 

changes the measured reference current, etc…

Could be PID 
controller or 
arbitrary model

• Reward can simply be -Δ(target setting, measurement)
• But may also include penalties, i.e. for making a 

prescription that wildly differs from PID controller model
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Surrogate environment
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GMPS 
control 
model

Booster 
Environment

• Without board, no live training in Booster environment
• In mean time, replace with a surrogate model

• Use recurrent NN (LSTM) as surrogate
• feedback / state memory mechanism

• Maps: Imin(t≤0) → Imin(t1)
• Train surrogate w/ Deep-Q Network

Surrogate 
model

4

Surrogate Model Structure
- Long Short-Term Memory (LSTM) model 

learned from the historian measurements
- Input: B:VIMIN @ t-1
- Output: B:VIMIN @ t
- Mimic the actual system in DRL training

LSTM structure:
-1 LSTM layer,  512 node, 1,052,672 parameters

-1 batch normalization layer, 512 node, 2,048 parameters

-1 dense layer, 1 node, 513 parameters

LSTM node


