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• Computing projections for high energy physics (HEP) greatly outpace CPU growth, interest 
in ML rapidly increasing


• Coprocessors (GPU, FPGA, …) offer possible solution → as-a-Service (aaS) computing 

• Speedups at large:


• Batch size and/or complexity

Introduction
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Coprocessor

as-a-Service Computing
• As a user, I just want my workflow to run quickly


• as-a-Service (aaS) computing


• Client communicates with server CPU, server CPU communicates 
with coprocessor


• Many existing tools available from industry, cloud


• Details in the backup
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SONIC Framework
• Services for Optimized Network Inference on Coprocessors (SONIC)


• Integration of as-a-service requests into HEP workflows


• Works with any accelerator


• Requests are asynchronous, non-blocking
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Benchmarks

Tagging tops
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Fig. 3: A comparison of QCD (left) and top (right) jet images averaged over 5,000 jets.

Model Accuracy AUC 1/"B("S = 30%)
Floating point 0.9009 0.9797 670.8

Quant. 0.8413 0.9754 414.6
Quant., f.t. 0.9296 0.9825 970.7
Brainwave 0.9257 0.9821 934.8

Brainwave, f.t. 0.9348 0.9830 999.6

Table 1: The performance of the evaluated models on
the top tagging dataset.

characteristic (ROC) curve is a graph of the false pos-
itive rate (background QCD jet e�ciency) as a func-
tion of the true positive rate (top quark jet e�ciency.)
It is customary to report three metrics for the per-
formance of the network on the top tagging dataset:
model accuracy, area under the ROC curve (AUC),
and background rejection power at a fixed signal ef-
ficiency of 30%, 1/"B("S = 30%). Fig. 4 shows the
ROC curve comparison for the transfer learning ver-
sion of ResNet-50 as well as the fully retrained fea-
turizer with custom weights. In Table 1, the accuracy,
AUC, and 1/"B("S = 30%) values are listed for each
model considered. The performance of the retrained
ResNet-50 compared to other models developed for
this dataset is state-of-the-art; the best performance is
1/"B("S = 30%) ⇡ 1000.

One other consideration in this study is the size of
the model. The typical particle physics models used
for top tagging are often several orders of magnitude
smaller than ResNet-50 in terms of the numbers of pa-
rameters and operations. However, it should be noted
that the best-performing models to date (ResNeXt50
and a directed graph CNN) [32,24] are within a factor
of a few in size with respect to the ResNet-50 model.
We emphasize here that this study is a proof-of-concept
for the physics performance and that there are many
other very challenging, computationally intensive algo-

Fig. 4: The ROC curves showing the performance of
the floating point and quantized versions (before fine-
tuning, after fine-tuning, and using the Brainwave ser-
vice) of the ResNet-50 top tagging model.

rithms where machine learning is being explored. We
anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.
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anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.

Public top tagging data challenge

Averaged over 1000 jets
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ResNet

FACILE DeepCalo

Calorimeter energy regression
Cluster energy regression

top quark image classification

• FACILE  
(batch 16000) 

• DeepCalo  
(batch 10) 

• ResNet  
(batch 10)

2k 
parameters

10M 
parameters

2M 
parameters



Gains
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Algorithm complexity

Where do we gain from coprocessors? 

GPU/FPGA aaS Gain w.r.t. 
CPU

2 ms (GPU)

0.2 ms (FPGA)

8x (GPU) 
80x (FPGA)

0.1 ms (GPU)

in progress (FPGA) 750x

1-2 ms  
(GPU/FPGA) 500x



Dynamic Batching
• Allows server to wait for 

requests to build up


• Most beneficial for small-batch 
algorithms


• Can extend event-by-event 
processing to multi-event 
processing


• Transparent to user


• Single-line change to server 
configuration
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dynamic_batching {
  preferred_batch_size: [ 100 ]
}

Can also specify max wait time



Dynamic Batching

• 60x throughput gain in this case


• 10k events/s for 1M weight model


• ~1000 simultaneous clients to saturate single GPU
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Scalability

• Used FACILE in CMS HLT 
workflow to test as-a-
service model in realistic 
computing environment


• Use of cloud resources 
allows at-scale test
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Server with 
GPUs/FPGAs

High Level Trigger (HLT) emulation

On-site server

V100 GPU AWS f1 FPGA (VU9P)
• 10% reduction in computing 

time operating as-a-service 

• → Maximal achievable 
reduction for this single 
algorithm


• No increase in latency until 
300/1500 clients (GPU/FPGA)


• FPGA limited by 25 Gbps 
network (Alveo U250 
capable of serving 3300 
clients)

/



Summary
• As-a-service computing has many existing tools that we can leverage to address HEP 

computing challenges


• Very cohesive with ML usage, extremely simple for end user


• Papers detailing GPUaaS (2007.10359), FPGAaaS (2010.08556)


• Work is enabling heterogeneous systems for real-time processing


• Many more possibilities for improvement
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BACKUP
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Setup
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Tools 
(backup)

Use NVidia triton inference server for 
GPU + Customized GCP Kubernetes 

Wrote our own FPGA 

gRPC inference server

CPU Client 
(eg. CMS software)

Coprocessor 
(eg. FPGA, GPU, …)GRPC Server 

(eg. Cloud instance)

PCIe

gRPC

gRPC

Cloud/Ground

• For fast inference we focus on gRPC protocol 

• Open source remote procedure call (RPC) system developed by Google 

1. Formats inputs 

2. Sends asynchronous, non-

blocking gRPC call

3. Interprets response

1. Runs the inference
1. Initializes model on coprocessor

2. Receives and schedules inference request

3. Sends inference request to accelerator

4. Outputs and send results

5. Monitors network/device utilization 



As-a-service Computing
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• Can provide large speed 
up w.r.t traditional 
computing model


• In principle, as-a-service 
can be used for any 
algorithm


• Simply send all 
inputs to server, 
server returns 
outputs


• Just need server able 
to accept requests 
and communicate 
with GPU or FPGA



1 GPU Server
• Inference performed in CMS workflow


• Larger models saturate with fewer clients, 
lower throughput


• Range of performance for GPUs
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Fermilab 1 GPU server

FACILE DeepCalo ResNet

MC Preliminary MC Preliminary MC Preliminary

10 batch 10 batch16000 batch



Multi-GPU Server
• High bandwidth, long 

distance (MIT and 
Google Cloud US-
central)


• Linear scaling with # 
of GPUs


• Throughput 
saturates at ~60 
Gbps (8000 events/s)
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MIT 1-24 
GPU server

FACILE



FPGA Server
• With small FACILE network, major speedup 

w.r.t. GPU (500 evt/s)


• Limitation from CPU


• For larger ResNet, comparable or slightly 
better throughput w.r.t GPU
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Fermilab FPGA server

FACILE ResNet ResNet

/

8 FPGA

1 FPGA
1 FPGA



8 GPU/FPGA Server
• Similar performance 

between GPU and FPGA


• ~150 evt/s
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Fermilab GPU/FPGA 
server

ResNet



Coprocessor Scalability

• Factor of 5 improvement 
between of FPGA over GPU 
for HLT less than >10x 
shown earlier


• Running on AWS, network 
network bandwidth is limited 
to 25 Gbps


• Corresponds to a maximal throughput of ~2500 events/s


• Consistent with HLT saturation at 1500 processes
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AWS f1 FPGA (VU9P)



FPGA Server Design
• Same workflow developed for FPGA 

coprocessors


• gRPC base (Triton calls), same config as for 
running on GPU


• FACILE: hls4ml (Alveo U250 & AWS f1)


• DeepCalo: hls4ml (ongoing work) 

• ResNet: Xilinx ML Suite (AWS f1)


• ResNet: Microsoft Azure ΜL Studio (Azure 
Stack Edge)


• Many design settings to optimize
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Coprocessor Scalability

• 10% reduction in computing time operating as-a-service 

• Consistent with fraction of time spent on HCAL local reco w.r.t total HLT time


• → Maximal achievable reduction for this single algorithm


• No increase in latency until 300/1500 clients (GPU/FPGA)


• Single device can service 300/1500 HLT instances
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MC Preliminary

V100 GPU AWS f1 FPGA (VU9P)



Tools
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Our tools for prototyping CMS reconstruction as-a-service 
1. Google Cloud/Amazon Web Services/Microsoft Azure

2. T2/T3 clusters

3. local server/accelerator hardware 


Towards abstraction:  
on-premises, in the cloud, oh my!

!26

Building a network of 
heterogeneous resources in 
the cloud and on-premises 

Work-in-progress: how to 
coordinate and orchestrate 
distributed heterogeneous 

resources 

GPU, ASIC
GPU, FPGA

GPU, FPGA

GPU, FPGA

FPGA

GPU

GPU, FPGA

GPU, FPGA

We have a wide network of resources, and perform at-
scale tests with many different client-servers 
configurations, with servers both remote and on-site 



Triton Inference Server
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Server

Network

Client sends request 
over network

The number of connected 
GPUs/FPGAs is scaleable; 

each has an instance of 
each model

Many model formats 
(TensorFlow, Pytorch, 

TensorRT, …)

Models are stored in 
local repository

Server receives 
request

Server queues and 
schedules request

Output monitoring 
information 



Scalability
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What is the 
network limit? 
How reliable is it?

A client-server schematic

How does the 
throughput scale 
with server size?

How many clients 
can a GPU service? 
What is the 
throughput?



Network Limit

• Server-on-site: no bandwidth limit found


• Remote server: egress limit at 70 Gb/s for MIT T2


• Exceeds needs for use cases considered
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Limited by GPU throughput


