

SONIC

Coprocessors as a service for deep learning inference in high energy physics

arXiv:2007.10359

arXiv:2010.08556

Dylan Rankin*, Jeffrey Krupa, Philip Harris, Jack Dinsmore (MIT)
Maria Acosta Flechas, Burt Holzman, Thomas Klijnsma, Kevin Pedro, Nhan Tran (FNAL)
Scott Hauck, Shih-Chieh Hsu, Matthew Trahms, Kelvin Lin, Yu Lou, Natchanon Suaysom
(University of Washington)
Ta-Wei Ho (National Tsing Hua University)
Javier Duarte (UCSD)
Mia Liu (Purdue University)

December 2nd, 2020

Introduction

 Computing projections for high energy physics (HEP) greatly outpace CPU growth, interest in ML rapidly increasing

- Coprocessors (GPU, FPGA, ...) offer possible solution → as-a-Service (aaS) computing
- Speedups at large:
 - Batch size and/or complexity

as-a-Service Computing

As a user, I just want my workflow to run quickly

- Client communicates with server CPU, server CPU communicates with coprocessor
- Many existing tools available from industry, cloud
 - Details in the backup

SONIC Framework

- Services for Optimized Network Inference on Coprocessors (SONIC)
- Integration of as-a-service requests into HEP workflows
 - Works with any accelerator
- Requests are asynchronous, non-blocking

Benchmarks

Cluster energy regression

10M

parameters

ResNet

(batch 10)

Gains

Where do we gain from coprocessors?

GPU/FPGA aaS	Gain w.r.t. CPU
2 ms (GPU) 0.2 ms (FPGA)	8x (GPU) 80x (FPGA)
0.1 ms (GPU) in progress (FPGA)	750x
1-2 ms (GPU/FPGA)	500x

Algorithm complexity

Dynamic Batching

- Allows server to wait for requests to build up
- Most beneficial for small-batch algorithms
- Can extend event-by-event processing to multi-event processing
 - Transparent to user
- Single-line change to server configuration


```
dynamic_batching {
   preferred_batch_size: [ 100 ]
}
```

Can also specify max wait time

Dynamic Batching

- 60x throughput gain in this case
 - 10k events/s for 1M weight model
 - ~1000 simultaneous clients to saturate single GPU

Scalability

High Level Trigger (HLT) emulation

- Used FACILE in CMS HLT workflow to test as-aservice model in realistic computing environment
- Use of cloud resources allows at-scale test

- 10% reduction in computing time operating as-a-service
 - Maximal achievable reduction for this single algorithm
- No increase in latency until 300/1500 clients (GPU/FPGA)
 - FPGA limited by 25 Gbps network (Alveo U250 capable of serving 3300 clients)

Summary

- As-a-service computing has many existing tools that we can leverage to address HEP computing challenges
 - Very cohesive with ML usage, extremely simple for end user
- Papers detailing GPUaaS (2007.10359), FPGAaaS (2010.08556)
- Work is enabling heterogeneous systems for real-time processing
- Many more possibilities for improvement

BACKUP

Setup

- For fast inference we focus on gRPC protocol
 - Open source remote procedure call (RPC) system developed by Google

- 1. Formats inputs
- 2. Sends asynchronous, nonblocking gRPC call
- 3. Interprets response

- 1. Initializes model on coprocessor
- 2. Receives and schedules inference request
- 3. Sends inference request to accelerator
- 4. Outputs and send results
- 5. Monitors network/device utilization

Wrote our own FPGA gRPC inference server

As-a-service Computing

- Can provide large speed up w.r.t traditional computing model
- In principle, as-a-service can be used for any algorithm
 - Simply send all inputs to server, server returns outputs
 - Just need server able to accept requests and communicate with GPU or FPGA

Processor as-a-Service

1 GPU Server

- Inference performed in CMS workflow
- Larger models saturate with fewer clients, lower throughput

Range of performance for GPUs

Multi-GPU Server

- High bandwidth, long distance (MIT and Google Cloud UScentral)
- Linear scaling with # of GPUs
- Throughput saturates at ~60
 Gbps (8000 events/s)

FPGA Server

 With small FACILE network, major speedup w.r.t. GPU (500 evt/s)

- Limitation from CPU
- For larger ResNet, comparable or slightly better throughput w.r.t GPU

8 GPU/FPGA Server

 Similar performance between GPU and FPGA

~150 evt/s

Coprocessor Scalability

AWS f1 FPGA (VU9P)

- Factor of 5 improvement between of FPGA over GPU for HLT less than >10x shown earlier
- Running on AWS, network network bandwidth is limited to 25 Gbps

- Corresponds to a maximal throughput of ~2500 events/s
 - Consistent with HLT saturation at 1500 processes

FPGA Server Design

- Same workflow developed for FPGA coprocessors
 - gRPC base (Triton calls), same config as for running on GPU
 - FACILE: hls4ml (Alveo U250 & AWS f1)
 - DeepCalo: hls4ml (ongoing work)
 - ResNet: Xilinx ML Suite (AWS f1)
 - ResNet: Microsoft Azure ML Studio (Azure Stack Edge)

Many design settings to optimize

Coprocessor Scalability

- 10% reduction in computing time operating as-a-service
 - · Consistent with fraction of time spent on HCAL local reco w.r.t total HLT time
 - → Maximal achievable reduction for this single algorithm
- No increase in latency until 300/1500 clients (GPU/FPGA)
 - Single device can service 300/1500 HLT instances

Tools

Our tools for prototyping CMS reconstruction as-a-service

- Google Cloud/Amazon Web Services/Microsoft Azure
- T2/T3 clusters
- local server/accelerator hardware

We have a wide network of resources, and perform atscale tests with many different client-servers configurations, with servers both remote and on-site

Triton Inference Server

Client sends request over network

Server receives request

Server queues and schedules request

The number of connected GPUs/FPGAs is scaleable; each has an instance of each model

Models are stored in local repository

Many model formats (TensorFlow, Pytorch, TensorRT, ...)

Output monitoring information

Scalability

A client-server schematic

Network Limit

- Server-on-site: no bandwidth limit found
- Remote server: egress limit at 70 Gb/s for MIT T2
 - Exceeds needs for use cases considered