

Automatic heterogeneous quantization of DNNs for ultra low-area, low-latency inference at particle colliders

arXiv:2006.10159

Thea Aarrestad, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Adrian Pol, Sioni Summers (CERN) Claudionor N. Coelho Jr. (Palo Alto Networks) Aki Kuusela, Shan Li, Hao Zhuang (Google LLC)

01.12.20

Southern Methodist University

Edge inference at LHC

Level-1 hardware trigger

- 12.5 µs to make decision
- Input data bandwidth 63 Tb/s
- 1024 algos in parallel on 12 FPGAs

High Level Trigger CPU farm

Detector

- Collisions every 25 ns
- Detector front-end ASICs

See Vladimir's and Claire's talks

1 kHz

Offline reconstruction and storage

See Giuseppe's talk

Extremely limited area and high competition over resources \rightarrow need ultra-compressed DNNs (and tools for obtaining them <u>easily</u>)

Quantization

Fixed point post-training quantization

 Floating point 32 arithmetic use x3-5 more resources, x2 higher latency than fixed-point → convert to fixed-point

Decimal: 3.25

During training: -15 · 2E-127 · (1.M)

01000000101000000000000000000000

S Exponent

Mantissa

On hardware: ap_fixed (W,I)

<p

By definition lossy, precision must be tuned carefully (weights usually don't need large dynamic range. But, worse 'resolution')

Can we do better? Yes!

- Quantization-aware training (QAT): Rounded/clipped quantized weights in forward pass, fp32 in back-prop (straight-through estimator)
- Binary/ternary quantized networks already supported in hls4ml

QKeras: Library for training quantization-aware Keras models

- Simple drop-in replacement of Keras layers
- Heterogenous quantization (per layer, parameter type)

Several quantizers available

- Exponent quantization, e.g 'quantized_po2'
- Mantissa quantization, e.g 'quantized_bits'
- Both above, eg. 'ternary' and 'binary'

Full support for QKeras models in hls4ml

 Easy for users to design and deploy quantized, low-latency DNNs on chip!

```
from tensorflow.keras.layers import Input, Activation
from qkeras import quantized_bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization
x = Input((16))
x = QDense(64,
    kernel_quantizer = quantized_bits(6,0,alpha=1),
    bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation('quantized_relu(6,0)')(x)
x = QDense(32,
    kernel_quantizer = quantized_bits(6,0,alpha=1),
    bias_quantizer
                   = quantized_bits(6,0,alpha=1)(x)
x = QBatchNormalization()(x)
x = QActivation('quantized_relu(6,0)')(x)
x = QDense(32,
    kernel_quantizer = quantized_bits(6,0,alpha=1),
                    = quantized_bits(6,0,alpha=1))(x)
    bias_quantizer
x = QBatchNormalization()(x)
x = QActivation('quantized_relu(6,0)')(x)
x = QDense(5,
    kernel_quantizer = quantized_bits(6,0,alpha=1),
    bias_quantizer
                    = quantized_bits(6,0,alpha=1)(x)
x = Activation('softmax')(x)
```


QKeras: Library for training quantization-aware Keras models

1.00

0.90

- Simple drop-in replacement of Keras layers
- Heterogenous quantization (per layer, parameter type)

Several quantizers available

- Exponent quantization, e.g 'quantized_po2'
- Mantissa quantization, e.g 'quantized_bits'
- Both above, eg. 'ternary' and 'binary'

Full support for QKeras models in hls4ml

 Easy for users to design and deploy quantized, low-latency DNNs on chip!

Demonstrated in Vladimir's talk yesterday

arxiv: 2006.10159

QTools energy estimate

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization (see Amir's talk)

For edge inference, need best possible quantization configuration for

- Highest accuracy ↑...
- ullet ... and lowest resource consumption \downarrow

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools energy estimate

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization (see Amir's talk)

For edge inference, need best possible quantization configuration for

- Highest accuracy ↑...
- ullet ... and lowest resource consumption \downarrow

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

- Model size in bits
- Energy consumption in Watts

Model A	%]	Per-layer energy consumption [pJ]								$ergy [\mu J]$	Total bits	
		Dense	ReLU	Dense	ReLU	Dense	ReLU	Dense	Softmax			
$\overline{ m BF}$	74.4	1735	53	3240	27	1630	27	281	11		0.00700	61446
$\mathbf{Q6}$	74.8	794	23	1120	11	562	11	99	11		0.00263	26334
		F	orgivii	ng Facto	or = 1	$+ \Delta_{accu}$	$_{racy} \times 10$	og _{rate} (S	$\times \frac{Cost_{ref}}{Cost_{tria}}$			

Maximize accuracy + minimizing cost in hyper parameter scan over quantizers:

AutoQKeras

Workflow

AutoQKeras

AutoQ Bayesian optimization at work!

• Simultaneously scan over quantizers and N filters(often less/more filters needed when quantizing)

AutoQKeras

AutoQ Bayesian optimization at work!

• Simultaneously scan over quantizers and N filters(often less/more filters needed when quantizing)

FPGA performance

Multiplications move to LUTs at bit width <10. Good, usually O(103) more LUTs than DSPs

Model	Accuracy [%]	Latency [ns]	Latency [clock cycles]	DSP [%]	LUT [%]	FF [%]
$\overline{ m BF}$	74.4	45	9	56.0 (1826)	5.2 (48321)	0.8 (20132)
$\mathbf{Q6}$	74.8	55	11	1.8(124)	3.4(39782)	$0.3 \ (8128)$
\mathbf{QE}	72.3	55	11	1.0 (66)	0.8 (9149)	0.1(1781)

Summary

From TensorFlow Keras model to ultra-compressed, low-latency firmware in two steps with QKeras and hls4ml

• Nanosecond inference, x50 reduction in resources with little loss in model accuracy

Quantization-aware training and pruning (Vladimir's talk, TF Pruning API) are measures every application developer can take to simplify on-chip deployment

• Extremely useful for those designing edge inference engines (like DNN applications for HL-LHC)

pip install hls4ml

pip install git+https://github.com/google/qkeras.git@master

And join the hls4ml tutorial by Sioni on Thursday for hands-on QKeras+hls4ml experience!