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Major challenges

• Bandwidth

• Low latency

• Low power

• High-radiation
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Autoencoder for data compression
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Network weights are

fully reconfigurable!
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Encoder architecture
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void foo(int A[10],

int B[10], int C[10])

{

int i = 0;

l1: for (; i < 10; i++) {

A[i] = B[i] * i;

}

i = 0;

l2: for (; i < 10; i++) {

B[i] = A[i] * B[i];

C[i] = B[i] / 10;

}

bar(A, B);

}

HLS
Directives

HLS

inline bar ‘ON’

unroll l1 factor=10

bundle b1=A,B, b2=C

C++
Specification Technology Library

Part: … 

ReuseFactor: … 

Precision: … 

IOType: …

Backend: … 

hls4ml

Directives

ML Model
Training

ALGORITHM 
DEVELOPMENT

GDSII

HARDWARE
ACCELERATOR

TMR4sv_hls

Physics-driven hardware co-design

RTL
Hardware

Implementation(s)

● Algorithm development based on Physics data

● hls4ml simplifies the design of on-chip ML accelerators

■ | hls4ml directives | << | HLS directives |

■ C++ library of ML functionalities optimized for HLS

● TMR4sv_hls: Triple Modular Redundancy tool for System Verilog & HLS
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HLS: Design space exploration

○ Initiation interval = 1
○ Clock period = 25 ns
○ I/O fixed-point precision

• Inputs : 8b
• Weights : 6b
• 16 Outputs : 9b
• Programmable to 3b, 5b or 

7b
○ No pipeline, unroll all loops
○ No SRAMs, only registers
○ Map all arrays to registers
○ Inputs are wires, Outputs are registered
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HLS: Encoder
RTL schematic
Solution: Conv + Flatten + Dense

conv2D DenseFlatten

225,000 multiply and 
accumulate every 25 ns
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Combining RTL from various sources

• Encoder
• ML model converted with hls4ml

• HLS-generated Verilog RTL

• Converter
• C++, manually written

• HLS-generated Verilog RTL

• I2C Peripheral
• System Verilog RTL, manually 

written
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Fig. 3. The autoencoder neural network architecture and data flow for the
baseline encoder model

minimizes this total rearrangement cost, EMD(A, B). While

the performance of the autoencoder is assessed with EMD,

this metric is not used directly in the algorithm training, as it

involves non-linear and computationally intensive operations.

Models are instead trained with a modified χ2 loss function

incorporating cell-to-cell distances, as a fast approximation of

EMD. Specifically, individual TCs are re-summed into groups

of 2⇥2 and 3⇥3 “super-cells” with corresponding χ2 values

computed for the coarsified images. The total loss sums each

such χ2 together, resulting in a comparatively lenient penalty

when mis-reconstruction occurs only on small spatial scales.

Including these additional χ2 terms in the training procedure

is found to yield significant improvements to the autoencoder

performance, as measured with EMD.

Baseline Encoder Model

A simple encoding NN with a single convolutional and

dense layer architecture is investigated. Normalized inputs

from hexagonal sensors are arranged into three arrays of 4⇥4

to form a regular geometry. The convolution layer consists of

eight 3⇥3⇥3 kernel matrices, giving a 8⇥4⇥4 output after

convolution. These 128 values are flattened and fed through a

dense layer to yield 16 9-bit output values. ReLu activations

are applied before and after the dense layer. This leads to

a total of 2,288 weight parameters (dominated by the 2,064

parameters used to configure the dense layer), each of which

are specified with 6-bit precision. A single inference requires

a total of 4,448 multiply-and-accumulate operations, with

similar requirements from the convolution (2,400) and dense

layers (2,048). The size and complexity of this baseline model

are constrained by area, on-chip memory and interfaces, and

NN outputsSensor output 

bandwidth

64 bits 

160 bits
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Fig. 4. Median EMD for decoded HGCal test images as function of sensor
occupancy for six NN configurations. Vertical lines (suppressed for the 160-
bit configurations) denote 68% EMD intervals. Occupancy is defined as the
number of TCs with signals exceeding one minimum ionizing particle divided
by cosh⌘where⌘is the pseudorapidity of the TC. (Results shown for version
of NN with maximum of 10 bits for each of 16 outputs rather than 9 bits as
described in the text.)

power, which impose additional optimization considerations.

The encoder architecture with the reconfigurable weights is

illustrated in Fig. 3

Optimization Considerations and Comparisons

While the presence of a single convolution layer is critical

for good physics performance of the algorithm (approximated

by the EMD between input and decoded images), adding more

filters or additional convolution layers only weakly improves

physics performance, at the expense of significantly increased

area. Changes in the number and size of the dense layers yield

more dramatic differences.

Figure 4 shows a sweep over the number of dense layer

outputs, where remaining aspects of the design are fixed

based on hardware constraints: the precision of outputs and

weights are coherently varied to ensure that both the total

number of outputs and the weight bits are fixed. Architec-

tures featuring many outputs with lower relative precision

consistently outperform their counterparts. The autoencoder

is robust across a variety of conditions and performs well in

the high-occupancy regime, which poses the greatest challenge

for trigger reconstruction.
Reconfigurability: Figure 4 also demonstrates how the

same NN encoder can be re-optimized and configured for

new data-taking conditions, by comparing sensors in detector

regions requiring low- and high-throughput. The maximum

data throughput of 144 bits from 16 9-bit outputs can be

reduced through fully configurable selective truncation. Ex-

pected use cases include transmission of (48,80,112, 144) bits

from 16 (3,4,7,9)-bit outputs, though the network can also

be configured to transmit fewer than 16 outputs, or a mix of

precisions.

IV. IMPLEMENTATION METHODOLOGY AND RESULTS

In this section, we detail the implementation of the trained

neural network described in Sec. III in the ECON-T ASIC.
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• Data path - new data every 25 ns

• Triplicated registers only  

• No auto-correction or feedback

• (0.2% of design = 546 registers for data 
storage)

• No state machines: parallel architecture
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Fig. 7. Design floor-plan with an integrated converter, encoder and I2C
peripheral occupying a total area of 3.6 mm2. The converter is highlighted in
grey, the I2C peripheral in white and the rest of the area is occupied by the
encoder.

Digital Implementation in a Radiation Environment

The digital design consists of three major functional blocks:

(i) An encoder, which uses hl s4ml , a domain-specific trans-

lator/compiler for implementing the ML algorithm; (ii) A

converter which is a classical module designed with HLS; (iii)

and an I2C peripheral which uses a SystemVerilog RTL code.

The converter is used for normalizing the 48 (22b) inputs

to 48 (8b). An encoder is used for data classification and

further compression to 16 (9b) outputs. To have a flexible and

reconfigurable algorithm, all the parameters (13,728b) can be

setup via the I2C interface on-chip. The programming of the

I2C peripheral takes less than 50 us corresponding to a total

of 1,716 I2C clock cycles, utilizing an 8b input bus. Once

the weights are setup, the algorithm adds a total latency of 2

bunch crossing (BX) cycles to the trigger path - one cycle to

convert and another cycle to encode resulting in total inference

latency of 50ns and a new input accepted every 25ns.

Integrated Converter, Encoder and I2C peripheral: An

integrated approach to the development is needed in order

to avoid routing congestion of connecting the weights to the

appropriate layers across the encoder. The floor-plan of the

digital implementation occupying 2.4 mm x 1.5 mm is shown

in Fig 7. The converter logic is located near the data input at

the top of the design, majority of the area is occupied by the

encoder, interleaved with the distributed I2C network.

Design Considerations for Total Ionizing Dose Perfor-

mance: Apart from all requirements considered above, our

design must guarantee on-detector circuit reliability in the

high radiation environment of HL-LHC [18], [19]. The cir-

cuitry should withstand total ionizing dose of approximately

200Mrad over the lifetime of the experiment along with high

SEE rates [20]–[22]. Since previous measurement results have

indicated that the average time delay of all cells from the

65 nm LP process library increases after 200Mrad irradia-

tion [23], minimum size cells are avoided. Normal Vt standard

cell technology library isused. Implementation uses worst case

timing libraries to ensure performance after radiation damage.

All weights are stored in registers and no SRAMs or DICE

cells [24] are used.

Fig. 8. Triple modular redundancy scheme used for the encoder and converter.
Each register is triplicated and a majority voter determines the output.

Fig. 9. Full module triplication is used for the I2C peripheral. All combina-
tional logic within the module is triplicated, which is used by three majority
voters to form the inputs to triplicated registers. Feedback from the output of
the registers enables autocorrection and protects against accumulating errors
due to single event upsets over time.

Single Event Effect Mitigation: Mitigating SEEs is a

critical step in the ASIC implementation for effective perfor-

mance in the HL LHC environment. Several techniques have

been proposed and used over the years to tackle this specific

problem [25]–[27].

Triple modular redundancy (TMR) is a well-known tech-

nique to protect digital circuits against the undesirable effects

of SEEs [28], [29]. Depending on the functionality of the block

auto-correction features might be required for registers which

store data.

We have used two different TMR implementations: Simple

TMR with triplicated registers and a majority voter for the

data path shown in Figure 8 and fully triplicating the entire

module as shown in Figure 9 for the I2C peripheral for storing

weights.

Since new data arrives to the encoder block every 25ns, no

auto-correction techniques are required. On the other hand, the

values of the weights set by the I2C peripheral (parameters of

the neural network) are vital as they are central to the vector

multiplications used in NNs. Once programmed these are not

expected to change over lengthy periods of time, hence, auto

correction techniques are used to ensure that register errors

due to single event upsets do not accumulate over time. As

shown in Figure 9, all combinational logic within the module

is triplicated, which is used by three majority voters to form
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Single Event Effect Mitigation: Mitigating SEEs is a

critical step in the ASIC implementation for effective perfor-

mance in the HL LHC environment. Several techniques have

been proposed and used over the years to tackle this specific

problem [25]–[27].

Triple modular redundancy (TMR) is a well-known tech-

nique to protect digital circuits against the undesirable effects
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auto-correction features might be required for registers which
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We have used two different TMR implementations: Simple

TMR with triplicated registers and a majority voter for the

data path shown in Figure 8 and fully triplicating the entire

module as shown in Figure 9 for the I2C peripheral for storing

weights.

Since new data arrives to the encoder block every 25ns, no

auto-correction techniques are required. On the other hand, the

values of the weights set by the I2C peripheral (parameters of

the neural network) are vital as they are central to the vector

multiplications used in NNs. Once programmed these are not

expected to change over lengthy periods of time, hence, auto

correction techniques are used to ensure that register errors

due to single event upsets do not accumulate over time. As

shown in Figure 9, all combinational logic within the module

is triplicated, which is used by three majority voters to form

• Weights storage: Auto-correction and feedback

• Full module triplication

• 75% design is registers: which need to be triplicated

• Doesn’t require additional Error Correction code

• I2C - RW: Bidirectional - can be readout to check weights

Spacing: at least 15 µm apart

Single-Event Effect Mitigation:          
Triple modular redundancy strategy 
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Conclusions

● We proposed a design methodology that spans from the ML model 
generation to the ASIC IP block creation

● We implemented ML compressions for detectors in low power, low 
latency, high radiation environment
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Rate II Latency Energy/inference Power

40 MHz 1 50 ns 2.38 nJ/inf. 95 mW

Area Gates Tech. Node

3.6 mm2 800K TSMC 65nm LP CMOS

Radiation tolerance

Up to 200 MRad
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