
Ben Hawks (Fermilab), Javier Duarte (UCSD), Nhan Tran (Fermilab),
Fast Machine Learning Workshop 2020
1 December 2020

Exploring the Interplay Between Quantization and Pruning

• Motivation
• Pruning techniques
• Metrics
• Approach and considerations
• Preliminary Results

– Loss Functions
– Performance (BatNorm comparison)
– Performance (FT vs LT)

• Outlook
• Acknowledgements

Overview

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning2

• We want to build off of and extend existing Quantization Aware Training (QAT)
techniques to see if we can include pruning and still see performance gains

– Can we figure out the “sweet spot” of optimal quantization and pruning for a given
model?

– Are quantization and pruning doing orthogonal jobs?
– What is a good way to combine the two techniques?

n.b. see talks by Amir and Thea for more background/motivation on quantization and pruning!

Motivation

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning3

https://indico.cern.ch/event/924283/contributions/4105159/
https://indico.cern.ch/event/924283/contributions/4105260/

• In this work, we explore two pruning techniques
– Iterative/Fine Tuning Pruning (FT): ‘traditional’ pruning method of training a network,

removing some subset of parameters, then re-training (fine tuning) after weight removal,
repeated until desired performance is reached

– Lottery Ticket Hypothesis (LT): newer approach similar to FT pruning, where a network is
trained, a subset of parameters is removed, but before re-training, the remaining weights are
reset to their initialized, un-trained state. This is also repeated until desired performance is
reached

Pruning Techniques

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning4

Focus is on unstructured
(synapse level) pruning

https://arxiv.org/pdf/1803.03635.pdf

• Network Performance: Accuracy, AUC ROC, etc.

• Computational Complexity: Bit Operations (BOPs)
– Measure of computational ‘work’ done in a layer/network

• Entropic Information Content
– Neural Efficiency (η)- Measure of utilization of a network’s

state space in terms of entropic efficiency (Shannon’s entropy)
– Does network information content change during quantization/pruning?

• Generalizability vs. Memorization:
– Is network learning concepts or memorizing?
– Test by injecting class randomization as a measure of efficiency

Metrics

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning5

(Entropy)

(#neurons)

https://arxiv.org/pdf/1804.10969.pdf
https://arxiv.org/abs/2006.02909

• Approach: first quantize via QAT then iteratively prune at that quantization
– rationale: quantization (pruning) affects BOPS quadratically (linearly)
– Implemented using Brevitas and the built-in PyTorch pruning library

• The model used was the 3 hidden layer jet substructure tagging model

– 16 → 64 → 32 → 32 → 5 (MLP)

• The model was quantized to 12b, 8b, 6b and 4b and pruned

Iteratively by ~10% each time (until the last few iterations)

• Multiple permutations of various options were tested:
– w/ and w/o BatchNorm after each hidden layer, turn affine params/running statistics on or off

– Pruned via FT or LT

– w/ and w/o L1 regularization - results shown with L1 regularization

Approach and considerations

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning6

See Thea’s talk

https://github.com/Xilinx/brevitas
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
https://indico.cern.ch/event/924283/contributions/4105260/

Pruning Loss Functions at 6-bit QAT

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning7

Fine Tuning (FT) Lottery Ticket Hypothesis (LT)

Each red line is ~10% pruning of the original network

v

Preliminary Results - Evaluating BatchNorm

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning8

Higher is better, Theoretical Max of 1.0

Takeaway: Using BatchNorm is advantageous for this model

Preliminary Results - Performance (FT vs LT)

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning9

Higher is better, Theoretical Max of 1.0

Takeaway: FT & LT reach about the same performance for this model,
But both can reach ~80% pruned @ 6b Quantization without perf. loss!

Preliminary Results - Neural Efficiency (FT vs LT)

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning10

Higher is better, Theoretical Max of 1.0

Takeaway: the information efficiency is mostly preserved as we prune and
quantize up until about 80% Pruned @ 6b Quantization!

• Training Loss
– L1 regularization de-emphasizes unimportant weights, but changes the

information content of the network

• More on neural efficiency and generalizability
– Does (more or less) neural efficiency translation into greater generalizability?

• Comparison to Bayesian Optimization
– Can we get better (or similar) performance with a “right-sized” unpruned

network architecture?

In progress studies overflow

• Straightforward combination of quantization and pruning yields promising
results — 6b QAT model can be pruned by 80% with no loss in performance

– BatchNorm helps for lower precisions
– FT and LT pruning show similar performance and information content
– Exploring dependence on class randomization, Bayesian Optimization, and alternative

regularization

• Many things to follow up on beyond first set of studies!
– Do hardware implementations (FPGA/ASIC) follow computational cost metrics?
– How does the P+Q approach work with more advanced mixed precisions quantization?
– Hessian-based optimization (see Amir’s talk)
– Calculating full, bit-level entropy states at low precisions (<6b)
– Exploring other information content metrics (SVCCA)
– Evaluating this approach on other datasets/models (MNIST, etc)

Outlook

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning12

https://indico.cern.ch/event/924283/contributions/4105159/
https://arxiv.org/abs/1706.05806

• Thanks to Nick Schaub and Nathan Hotaling at NIH/NCATS and Nick Fraser,
Alessandro Pappalardo, Yaman Umuroglu along with the rest of the Xilinx FINN
team for their continued expertise, help and input on this project!

• Thanks to the FastML Community for all of their continued support, comments,
and questions!

• Thanks to the Pacific Research Platform Nautilus Kubernetes cluster for
providing computing resources to run these studies!

Acknowledgements

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning13

https://nautilus.optiputer.net/

Backup Slides!

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning14

• Bayesian Optimization (BO)
– We’ve run some very early BO tests using Ax/BoTorch on the same model and have

established a process for running further tests

• L1 Regularization
– We’ve done some tests enabling/disabling L1 Regularization in some cases, and it

seems to boost Neural Efficiency when disabled. We want to further investigate this
to figure out if this could be affecting generalizability

• Training Data Randomization
– By randomizing some % of the labels in the training dataset, we attempt to see how

well our model actually ‘learns’ from the features vs just memorizing inputs, a model
with better ‘learning’ capabilities should retain more performance as more
randomization is applied.

Other Avenues Explored

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning15

Model – 3 Hidden Layer Jet Substructure Tagging

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning16

• 16 input features, 5 output classes
• 3 Hidden Layer Model
• np.float32 or quantized to 4, 6, 8, and 12 bits
• Batch size of 1024
• Adam optimizer, L1 Regularization (alpha = 1e-4)
• Dataset: HLS4ML LHC Jet dataset (100 particles)

• Train Size: 472500 (75% “train” dataset)
• Val Size: 157500 (25% “train dataset”)
• Test Size: 240000 (“test” dataset)
• Scaled with sklearn.preprocessing.StandardScaler

• 250 Epochs w/ Early Stopping
• Patience of 10 epochs

• Pruning all dense/linear layers weights (fc1, fc2, fc3, fc4)
• BatchNorm1D Added to 3 hidden dense/linear layers.

https://zenodo.org/record/3602254

Neural Efficiency

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning17

If the layer had only 2 states and they each occurred with probably 1/2: E = 1
If the layer had only 2 states and occured with probability 1/4 and 3/4: E = 0.81
If the layer had only 2 states and occured with probability 1/16 and 15/16: E = 0.34

BIG Caveat: in this paper, each neuron only holds 1 state per neuron to be calculationally feasible
If neuron > 0, state = 1 (firing)
If neuron <= 0, state = 0 (non-firing) [Schaub et al. 2020]

Layer Efficiency Network Efficiency

https://arxiv.org/pdf/2006.02909.pdf

Bit Operations (BOPs)

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning18

HCM: Hardware-Aware Complexity Metric for Neural Network Architectures
https://arxiv.org/pdf/2004.08906.pdf
UNIQ: Uniform Noise Injection for Non-Uniform Quantization of Neural Networks
https://arxiv.org/pdf/1804.10969.pdf

BOPs, making a few assumptions about your architecture, can be
broken down into the following terms where:

m = output features of a given layer
n = input features of a given layer
k = kernel size of a given (conv) layer
ba = precision of activation (inputs to layer)
bw = precision of layer weights

We can break each portion of the equation into its parts:
b_a * b_w = BOPs for the multiplication
b_a + b_w + log2(nk2) = BOPs required for the addition
mnk2 = Number of Multi-Adds in a given layer

https://arxiv.org/pdf/2004.08906.pdf
https://arxiv.org/pdf/1804.10969.pdf

Bit Operations (BOPs) cont.

12/1/2020 Ben Hawks | Exploring the Interplay Between Quantization and Pruning19

When dealing with dense layers, at least for computational cost, We can think of a dense layer as a 1x1
convolutional layer. Effectively making our definition (for the dense only jet tagging network):
BOPs = mn (b_a*b_w + b_a + b_w + log2(n))

But then we can add in another term, p, which is the fraction of the layer *remaining* after pruning:
BOPs = mn (p*b_a*b_w + b_a + b_w + log2(n))

Where BOPs of a whole network is the sum of the BOPS of each layer in the network.

There are a few things that BOPs doesn’t capture about the computational complexity of a model, especially in
regards to specific implementations/architectures, but for the time being it captures enough to give us a better
picture on an absolute scale.

Important Takeaway: BOPs scales quadratically with
precision, which represents quantization as being
more important to the computational cost of a model
than pruning

