Ejets Update 28/05/2020

BDT (TMVA) Implementation for Selection

Option	Array	Default	Predefined Values	Description
NTrees	_	800	_	Number of trees in the forest
MaxDepth	_	3	_	Max depth of the decision tree allowed
MinNodeSize	_	5%	_	Minimum percentage of training events required in a leaf node (default: Classification: 5%, Regression: 0.2%)
nCuts	_	20	_	Number of grid points in variable range used in finding optimal cut in node splitting
BoostType	_	AdaBoost	AdaBoost, RealAdaBoost, Bagging, AdaBoostR2, Grad	Boosting type for the trees in the for- est (note: AdaCost is still experimen- tal)
AdaBoostR2Loss	_	Quadratic	Linear, Quadratic, Exponential	Type of Loss function in AdaBoostR2
UseBaggedGrad	_	False	_	Use only a random subsample of all events for growing the trees in each it- eration. (Only valid for GradBoost)
Shrinkage	_	1	_	Learning rate for GradBoost algorithm
AdaBoostBeta	_	0.5	_	Learning rate for AdaBoost algorithm
UseRandomisedTrees	_	False	_	Determine at each node splitting the cut variable only as the best out of a random subset of variables (like in RandomForests)
UseNvars	_	2	_	Size of the subset of variables used with Randomised Tree option
UsePoissonNvars	_	True	_	Interpret UseNvars not as fixed num- ber but as mean of a Possion dis- tribution in each split with Ran- domisedTree option
BaggedSampleFraction	_	0.6	_	Relative size of bagged event sample to original size of the data sample (used whenever bagging is used (i.e. Use- BaggedGrad, Bagging,)
UseYesNoLeaf	_	True	_	Use Sig or Bkg categories, or the purity= $S/(S+B)$ as classification of the leaf node -> Real-AdaBoost

Summary

- have implemented the ROOT TMVA BDT tool on signal/background MC
- used all events from files with no cuts
- did not apply event weighting
- treated all variables as 'event level' variables
- used default BDT settings

 ran over cases: 	ModelA_1400_20	ModelB_1400_20	ModelE_1400_75
	ModelA_1000_150	ModelB_1000_5	ModelE_1000_150
	ModelA_600_1	ModelB_600_300	ModelE_600_0p5

• Used variables: njet jet_pt jet_E jet_Width nsecVtx

This is not a real selection/analysis...just proof-of-principle test...

ModelA_1400_20

TMVA overtraining check for classifier: BDT

Correlation Matrix (signal)

Correlation Matrix (background)

ModelA_600_1

L/NP (N/L)

(1/N) dN/0.006

Input variable: njet put variable: jet_pt Signal Background 0.005 (N/L 0.004 0.25 0.2 0.003 0.15 0.002 0.1 0.001 0.0 12 800 1000 1200 njet jet_pt Input variable: jet_Width Input variable: nsecVtx

TMVA overtraining check for classifier: BDT

Input variable: jet_E

0.002

0.0015

0.001

0.000

2500 3000

jet_E

Ę 0.002 (N)

Correlation Matrix (signal)

Linear correlation coefficients in % 100 nsecVtx 100 80 60 jet_Width 100 40 20 jet_E 100 0 -20 jet_pt 100 -40 -60 -80 njet 100 -100 jet_pt jet_Width jet_E nsecVtx njet

Correlation Matrix (background)

ModelB_600_300

L/NP (N/L)

0/NP (N/I)

Input variable: njet Signal Background 0.005 1N) 0.004 0.2 0.003 0.15 0.002 0.1 0.001 0.05 njet jet_pt

TMVA overtraining check for classifier: BDT

Input variable: jet_E

0.002 (N)

0.0015

0.001

0.000

2500 3000

jet_E

Correlation Matrix (signal)

Correlation Matrix (background)

ModelE 1000 150

Input variable: njet 0.3 Background 0.0035 0.3 0.003 0.25 E 0.0025 0.2 0.002 0.15 0.0015 0.1 0.001 0.05 0.0005 12 200 400 600 800 10001200140 njet

./NP (N/I)

)'0/NP (N/I)

TMVA overtraining check for classifier: BDT

Input variable: jet_E

0.002

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.000€

0.0004

0.0002

jet_pt

1500 2000 2500 300

jet_E

Correlation Matrix (signal)

Linear correlation coefficients in % 100 nsecVtx 100 80 60 jet Width 100 40 20 jet_E 100 0 -20 jet_pt 100 -40 -60 -80 njet 100 -100 jet_Width jet_E nsecVtx jet_pt njet

Correlation Matrix (background)

Now try removing variables...again with Model A 1400 20

Now try removing variables...again with Model A 1400 20

TMVA overtraining check for classifier: BDT

TMVA overtraining check for classifier: BDT

Drop: 1. njet 2. jet_pt

3. jet_E 4. jet_Width

TMVA overtraining check for classifier: BDT

Now try removing variables...again with Model A 1400 20

Try A_1400_20 against B_1400_20

1500

jet_E

0 2 4 6

8 10 12 14 16 18 20 22

nsecVtx

0.05 0.1 0.15 0.2

0.25

jet_Width

Correlation Matrix (signal)

Correlation Matrix (background)

Comments

- wrong to treat variables as event variables...just a test
 - plan to have sub-jet-level variables, jet-variables, event variables...multi-step approach
 - also need to apply pre-selection cuts and correct event weightings
 - MC statistics are on the low side
- use as a tool to test sensitivity of variables...but need to be aware of modelling fidelity
 - need to connect to sensitivity as benchmark...maybe S/sqrt(S+B) OK though?
- can check variable correlations
- can isolate events with 'distinct' BDT space features...should map to reconstructed space features
- easy to try alternate TMVA implementations and compare (e.g. NN, Fischer...)
- how to test systematics? re-training with shifted distributions...but not necessarily easy to do..
- model dependence of selection is a challenge
- I think this can be useful...but needs the implementation needs to go up in sophistication a few orders of magnitude...