

Review of flavor tagging algorithms at pp and ee and plans

Loukas Gouskos (CERN) Michele Selvaggi (CERN)

Introduction

- People have been tagging jets for more than 30 years at colliders
 - starting with b jets at LEP and Tevatron, then top, W/Z and Higgs jets at the LHC.
- But it is only now that we have begun to develop powerful and multi-object tagging capabilities.
 - potential to open access to many new physics topics that had been written off previously

Physics motivation (ee collisions)

- Flavour tagging essential for the e⁺e⁻ program, e.g.:
 - Higgs Sector:
 - (HL-)LHC can access 3rd gen. couplings and a few of 2nd generation
 - Future e⁺e⁻: Measure Higgs particle properties and interactions in challenging decay modes
 - E.g. cc, 1st gen quarks/fermions, gg [?]
 - Top quark physics [if E_{CM} sufficient]
 - Precise determination of top properties [mass, width, Yukawa]

Goal of this talk:

Discuss jet flavour tagging methods developed for the pp physics program at the LHC that could be explored at e⁺e⁻ experiments as well and develop a tentative plan of action

[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

Flavour tagging in pp colliders

[Focus on the latest developments]

Heavy flavor (b/c) tagging basics

• Large lifetime:

- b (c) ~ 1.5 (<1) ps
- b (c) decay length: ~5 (2-3) mm for p_T~50 GeV
- Displaced vertices/tracks
 - Large impact parameters
 - Tertiary vertices when B decays to charm hadron
- Large track multiplicity
 - ~5 (~2) charged tracks/decay in b (c)
- Non-isolated leptons
 - from B/C decays
- Harder fragmentation wrt to light quarks
 - ~75 (50)% of the jet energy carried out by b (c) hadrons

Charm has intermediate properties between light and b-jets

Detector side:

Need powerful pixel/tracking detectors

- ightarrow good spatial resolution
- ightarrow as little material as possible
- \rightarrow precise track alignment

Heavy flavor (b/c) tagging basics (II)

light (u, d, s, g) jet

charm jet

→ Based on these properties develop "human-inspired" (high-level) variables

→ Usually used as inputs to a Machine Learning (ML) algorithm

b/c tagging

- Exploit Deep Neural Networks (DNN) to improve b/c tagging
 - From BDT -> [simple] Dense Network (5 Hidden layers, 100 nodes)

b/c tagging

Performance in data

Impact on physics analyses

- → Significant gain in sensitivity in final states with multiple b quarks
- → ~50% more signal for ~15% increase in the background

b/c tagging: detector upgrades

- → DNN-based flavour tagging [with old detector] ~similar performance with traditional flavour tagging algos using the upgraded detector
- → Significant gain in performance with the upgraded pixel detector

Exploring more of the detector's potential

- A Jet in theory: Spray of particles produced by the hadronization of quarks and gluons
- Experimentally: A cone of reconstructed particles in the detector

• Can we gain by moving to **particle based jet tagging** with DNN?

Exploring more of the detector's potential (II)

- Event reconstruction at LHC & future experiments (will) have some flavour of PF event reconstruction:
 - Combines information from all subdetectors
 - Mutually exclusive list of particles

- Rich information for each particle
 - Energy/momentum
 - Position
 - Particle category
 - Displacement from the PV
 - Reconstruction quality

- Inputs for flavour tagging
- [O(50) properties/particle] x [~50-100 particles/jet] ~O(1000) inputs/jet
- Perfect case for DNN with "complex" architecture

Deep learning approaches for jet tagging

- Based on jet image:
 - Treat detector (i.e. calorimeters) as a camera
 & the jet as an image
 - Apply techniques used for image recognition (i.e. Convolutional Neural Networks – CNN)
 - **<u>But</u>**: jet images are very sparse
 - <u>Also:</u> LHC & future detectors are very heterogeneous/complex not "image-like"
 - difficult to include information from other subdetectors (e.g. tracking)
- Based on particle sequence:
 - Jet as a sequence of constituent particles
 - Apply techniques used for <u>natural language</u> processing [e.g. CNN-1D,..]
 - Inclusion of more information straight forward
 - Explore <u>more</u> of the detector & event reconstruction potential

ParticleBased jet tagging: Inputs

Treat the jet as a particle sequence and develop a multiclass classifier for:
 b, bb, c, uds, gluon tagging

- "Low level" inputs:
 - p_T , η , ϕ of PF candidates
 - Particle ID
 - Impact parameters & significance of charged tracks - PV
 - Various track parameters, etc...
 - p_T, η, φ of secondary vertices within jet cone

ParticleBased jet tagging

- Treat the jet as a particle sequence and develop a multiclass classifier for:
 b, bb, c, uds, gluon tagging
- Highlights from the <u>architecture</u>:

Performance

b tagging quark/gluon tagger **DPS-2018-033** √s = 13 TeV Misid. probability nisid. probability CMS Simulation Preliminary 0.9 QCD events, $\hat{p}_{\perp} = 30.50 \text{ GeV}$ tt events 0.8 jet p_ > 30 GeV AK4jets (p_ > 90 GeV) 0.7 DeepFlavour phase 1 DeepJet DeepCSV phase 1 0.6 recurrent DeepCSV phase 0 convolutional 0.5 udsg 0.4 20% 10⁻² 0.3 better 0.2 0. 0(10 10^{-3} 0.2 0.1 0.3 0.4 0.5 0.6 0 0.6 0.8 0.9 0.2 0.1 0.3 0.4 0.50.7 b jet efficiency

- \rightarrow Significant gain in performance even more significant at higher pT
- \rightarrow Large part of the performance loss of previous [non particle-based] taggers was due to track preselection

- \rightarrow Generator level light quarks/gluons that did not split to heavy flavour
- → Similar performance to dedicated implementations

Calibration in data

- Three main data samples with different flavour composition
 - ttbar [b-enhanced], W+c [c-enhanced] and multijet [uds/g enhanced]

Good overall Data/MC aggreement

Gain remains after accounting for the efficiency/mistagging correction factors

Teaser: "ParticleNet" for jet tagging

- How to represent a jet is one of the key aspects of ML algos for jet physics
 - ♦ Improve performance → extend physics reach
 - Lead to fresh insight into jets \rightarrow deepen our understanding of jet physics
- Inspired by the "point cloud" approach introduced "Particle cloud" for jets

Image from: <u>https://news.voyage.auto/an-introduction-to-lidar-the-key-self-</u> driving-car-sensor-a7e405590cff

Point cloud

Teaser: "ParticleNet" for jet tagging

- Jet representation: particle cloud
 - Particles are intrinsically unordered
 - Primary info: 2D coordinates in the η-φ space
 - But also exploit additional info
 - Energy, momentum, charge, particle t
 - Track quality, displacements, ..
- Network architecture: Dynamic Graph CNN (DGCNN)
 - Treat the particle cloud as a graph: each point is a vertex
 - for each point, a local patch is defined by finding its k-nearest neighbors

Top tagging:

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$	$1/\varepsilon_b$ at $\varepsilon_s = 30\%$
$\operatorname{ResNeXt-50}$	0.936	0.9837	302 ± 5	1147 ± 58
P-CNN	0.930	0.9803	201 ± 4	759 ± 24
PFN	-	0.9819	247 ± 3	888 ± 17
ParticleNet-Lite	0.937	0.9844	325 ± 5	1262 ± 49
ParticleNet	0.940	0.9858	397 ± 7	$\bf 1615 \pm 93$

Н→сс

Existing flavour tagging tools in e⁺e⁻ colliders

From pp to e⁺e⁻

- e⁺e⁻ colliders provide a very clean environment
 - Lower occupancy, no pileup

LHC: Z(->vv)H(->bb)

From pp to e⁺e⁻

- e⁺e⁻ colliders provide a very clean environment
 - Lower occupancy, no pileup

- Future e⁺e⁻ pixel/tracking detectors tailored for b/c tagging
 - Higher granularity wrt to LHC detectors
 - ATLAS/CMS pixel size: O(~100x100 μm²)
 - Less tracking material
 - ~0.4% X_0 /layer CMS/ATLAS Pixel, ~0.15-0.2% X_0 /layer in e⁺e⁻ detectors
 - better impact parameter resolution/ less multiple scattering
 - $_{\odot}~$ CMS/ATLAS Pixel resolution: O(10) $\mu m;$ ~2-5 μm in e+e-
 - Smaller fluence in e⁺e⁻: allows PIXEL detectors with layers closer to beam pipe
 - More precise track reconstruction in e⁺e⁻ due to more hits/layer in the pixel/tracker detectors

Jet flavour tagging in e⁺e⁻

- Algorithms under development follow similar-ish methods as the previous generation of algorithms used in pp and past e⁺e⁻
- Use as an example the "LCFIPlus" flavour tagging tool developed for ILC/CLIC Main steps in a nutshell:
 NIM A 808 (2016) 109–116
 - Vertex finding:
 - Identify primary and secondary vertices (PV and SV)
 - Jet clustering: optimized for flavour tagging [also in multijet final states]
 - SV and leptons [from B/C decays] used as seed for jet clustering
 - Different clustering algorithms explored
 - Jet vertex refiner:
 - Uses jet information to improve the b/c reconstruction
 - $_{\odot}$ $\,$ single tracks pass some selection are also considered as "pseudo-vertices"
 - Combine vertices to reduce #SV down to at most two
 - Flavour tagging: exploit shallow-ML [BDT]
 - Inputs: high-level variables based on PV, SV, track and jet properties
 - Output: "b", "c" and "uds" [no gluon-tagging]

jet flavour tagging in e⁺e⁻: Inputs

- Inputs categorized based on the number of SV (N_{sv})
 - N_{SV} = 0:
 - pT and displacement of the two tracks with highest sig(d0)
 - high-level variables based on tracks associated to jet/SV
 - muon and electron multiplicity
 - N_{SV} = 1, =2:
 - Additional variables related to the SV properties
 - Correlations between the SVs [when N_{SV} = 2]
 - etc...

Compared to taggers developed for pp

- \rightarrow Less input variables and fewer features per track/SV
- → Simpler network architecture

Room for improvement:

 \rightarrow Exploit advanced network architectures and lower-level features

 \rightarrow Inclusion of features relevant for gluon-tagging

CMS

b-tagging performance

- Similar performance [take it with a lot of grain of salt]
 - yet conditions and detector potential very different [favoring the e⁺e⁻ case]
- Definitely worth exloring the recent developments in pp colliders
 - (a) Improve performance and/or achieve necessary performance with less complex (cheaper) detector solutions

CMS

c-tagging performance

- Charm-bottom separation: similar performance
- Charm-light separation: e⁺e⁻ shows better performance, but for the pp case:
 - results derived <u>before</u> the upgraded PIXEL detector
 - Algorithm does not explore the latest tagging developments
 - i.e. low-level features and advanced ML architecture

Loukas Gouskos

FCCee Physics meeting; Thu. Jul 2, 2020

CMS

Possible improvements

- Based on a dedicated talk at the CLIC workshop in 2019 [slides]
 - Adaptive Vertex Fitting
 - currently strict track selection applied to prevent fake tracks

- Improve tracks from B-hadron using ML [e.g. BDT]
- Introduce Vertex Mass Recovery for better B/C separation
 - computed by charged tracks; typically smaller than its original mass
 - If π^0 is reconstructed as a part of vertex, adding the mass helps to recover the mass. Find best assignment to a vertex using ML
- Additional inputs to the flavour tagging MVA + move from BDT \rightarrow NN

Measure Higgs-charm coupling at the FCCee

The ZH(→cc) analysis

CMS-HIG-18-031

- ZH→cc can serve as a very useful benchmark measurement
 - Identify / motivate the detector requirements
 - Assess performance of event reconstruction and jet flavour tagging algorithms
 - Goal: measure Higgs-charm coupling O(~1%) at the FCCee
 - Can be significantly modified by the presence of BSM Physics

Jet clustering

Eur. Phys. J. C

(2018) 78:144

- Exclusive (e.g., Durham at LEP) vs. inclusive (e.g., ak_T at LHC) jets clustering?
 - Latest developments: Valencia algorithm
 - better beam BKG rejection \rightarrow improved mass resolution

• NB: CLIC-based studies – need to repeat for FCCee

0.2 event fraction/5 GeV 0.15 event fraction/10 GeV CLIC, \sqrt{s} = 3 TeV, tight $\gamma\gamma \rightarrow$ hadrons bkg. long. inv. k, (R=1.3) Durham VLC (β=γ=1, R=1.3) 0.15 long. invariant k (R=1.2) 0.1 VLC (R=1.2, β=γ=1) 0.1 0.05 0.05 -100 100 200 -2000 50 100 150 200 250 0 E_i^{RECO} - E_t^{TRUE} [GeV] m_h [GeV]

- More questions:
 - No clustering (use full event content) vs large-*R* / small-*R* jets?
 - No clustering could be more appropriate for the vvcc final state?
- Currently open questions:
 - Final answer will come also from iterations with the analysis strategy

Jet flavour calibration strategy

- Initial plan: design a flavour tagger that does not include information related to the mother particle [e.g. Z→cc or H→cc]
- <u>Advantage</u>: Use $Z \rightarrow bb/cc$ events for calibration
 - e.g., at FCCee: ~10¹¹ Z→bb at the Z pole; a tremendous number compared to ~millions at LEP
 - great opportunity to calibrate heavy flavour tagging algorithm with an unprecedented precision
- LHC: Z→bb events [possible also Z→cc] started very recently to be used for the calibration of last generation of H→bb taggers
 - with significantly reduced systematic uncertainties

Where do we stand:

- Finalizing infrastructure to develop a jet flavour tagging algorithm ala LHC
 - Samples (Delphes-based) with a first set of inputs already produced
 - Samples: $Z(\rightarrow vv)H(\rightarrow bb, cc, qq)$
 - Two jet clustering algorithms and detector configurations included
 - Working on final touches on the network architecture
 - Rough estimate: first results in ~2 week time
 - Access to the training package will be provided to all collaborators
- Analysis front:
 - A first version targeting $Z(\rightarrow qq)H(\rightarrow cc)$ final state in place [Delphes-based]
 - tagger's performance parametrized using performance from ILC/CLIC
 - Obviously, other channels will be explored in parallel
- Ultimate goal: incorporating all tagging and analysis developments in FCCSW

normalized

 10^{-}

10⁻²

 10^{-3}

 10^{-4}

 10^{-5}

10

CLD

Tentative plan

- Two routes [to be followed in parallel]:
 - Short term plan: based on Delphes samples (~few months)
 - Most of the necessary ingredients are in place
 - list of all charged pf candidates with all kinematic info and PID (including leptons) 0
 - Full correlated track parameters (computed with TrackCovariance code from Franco)
 - work in progress: secondary vertex reconstruction
 - Relevant for providing a "qualitative" understanding of the impact of different setups (e.g., detector configuration, tagging algos, etc..) on the physics outcome
 - Precise optimization can only be done using Full Simulation

Fragmentation

Tentative plan (II)

- Two routes [to be followed in parallel]:
 - Short term plan: based on Delphes samples (~few months)
 - Longer term plans (>6 months year): Implement necessary pieces in FCCSW
 - Detector simulation: Some subdetectors are included; no complete detector geometry in place yet
 - PF event reconstruction: Currently using Delphes PF candidates
 - possible solution: Use Gaudi-Marlin Processor (GMP) to include Pandora PF
 - Vertexing / tracking: possible solution use GMP to include ILC/CLIC algorithms
 - Tracking should be our main goal [PV and SV reconstruction can come later]
 - Assuming that we move to particle based tagging, dedicated b-tagging algorithm not urgent [but will be useful for better understanding the performance]
 - Jet clustering: results from Delphes-based simulation useful
 - Consider even reconstructing the full event: Achieve optimal performance
 - ML infrastructure: will benefit from the Delphes-based developments
 - Code for design/training/inference will be ported from the Delphes-based effort

Summary and Outlook

Summary & outlook

- Powerful jet flavour identification is essential for the success of the e⁺e⁻ physics program
- Jet tagging methods developed at the LHC can be explored at FCCee and potentially enhance the e⁺e⁻ physics program
 - And/or motivate the design of future detectors
- Large effort at the LHC to improve existing / develop new jet tagging methods
 - Key player in these developments: Advanced machine learning algorithms
 - Explore much more of the detector's and evt reconstruction true potential
 - Large gain in performance wrt traditional approaches; which translates in data
- A highly motivated group (i.e. CS#1) in place; finalizing plan of action
 - Close collaboration with the FCCee Physics and Software coordinators essential for the success of the effort.