WLCG Group

Security update

Romain Wartel

Why would someone attack our services?

Underground market

Main motive behind most security attacks remains money.

Overall Rank 2009 2008		Item	Percentage 2009 2008		Range of Prices
1	1	Credit card information	19%	32%	\$0.85-\$30
2	2	Bank account credentials	19%	19%	\$15-\$850
3	3	Email accounts	7%	5%	\$1-\$20
4	4	Email addresses	7%	5%	\$1.70/MB-\$15/MB
5	9	Shell scripts	6%	3%	\$2-\$5
6	6	Full identities	5%	4%	\$0.70-\$20
7	13	Credit card dumps	5%	2%	\$4-\$150
8	7	Mailers	4%	3%	\$4-\$10
9	8	Cash-out services	4%	3%	\$0-\$600 plus 50%-60%
10	12	Website administration credentials	4%	3%	\$2-\$30

Goods and services advertised on underground economy servers

Source: Symantec

(and sometimes hacktivism, more rarely challenge/ego.)

Security incidents - motivation

- Real business sophisticated and targeted attacks
 - Several security vendors identified more malware in 2009 than in the last 20 years altogether

New malicious code signatures

Source: Symantec.

How can writing malware or send spam be tied with real money?

How does this work?

Exploits, payload and propagation infrastructure

(or: how to make money with little/no risk of being caught?)

Exploits

- Exploit: software exploiting a security vulnerability
 - Objective: gain (some) remote control over the victim's host
 - Exploits can be purchased on the underground markets
 - Public/private vulnerabilities
 - -"0 day exploits" are best but most expensive
 - Some claim there are governments willing to pay as high as
 \$1 million for a single vulnerability
 - Potential impact, privileges gained, portability, ease of use

Rank	BID	Vulnerabilities	
1	36299	Microsoft Windows SMB2 '_Smb2ValidateProviderCallback()' Remote Code Execution	
2	35759	Adobe Reader and Flash Player Remote Code Execution	
3	33627	Microsoft Internet Explorer 7 Uninitialized Memory Code Execution	
4	35558	Microsoft Windows 'MPEG2TuneRequest' ActiveX Control Remote Code Execution	
5	34169	Adobe Reader Collab 'getlcon()' JavaScript Method Remote Code Execution	

Top attacked vulnerabilities, 2009

Source: Symantec

Once the attacker has an exploit, a payload needs to be added

Malicious Payload

- The payload performs the malicious work
 - Objectives:
 - Alter system's behavior
 - -e.g. add popups, fake search bars, send spam with host is idle, etc.
 - Collect data without the consent of the victim
 - e.g. keylogger
 - The payload may be a framework multiple purposes:
 - Dynamically pull payload on demand
 - Auto update mechanisms built-in
 - Eliminate competitors' "products"
 - Patch the system to protect it from competitors

- To propagate the malware to more victims, a strong computing infrastructure is need:
 - Hosting for the malicious payloads, rogue websites, etc.
 - Bandwidth to send spam, etc.
- Significant challenges
 - Must be very resilient!
 - Must scale to the number of victims
 - Must be customisable to adapt to the needs of customers
 - Must be cheap, to maximise profit

- Enjoy existing services widely used by the victims:
 - P2P networks ("Bond_23_Unreleased_2011_[HDRips.4.iPod]")
 - Social networks: Facebook, Twitter, MySpace, etc.
 - Inject malware via ads on large websites (BBC, etc.)

- Become the Internet Service Provider:
 - -Much more difficult to be taken off line, "bulletproof hosting"
 - -Manage its own pool of IP addresses
 - Accreditation removal may be complex and time consuming
- Legal complexity ensures stable operations (for a while)
 - -ISP may be settled in countries with relaxed Internet laws
 - -International ramification does help
 - -Sell the service to other underground companies
 - Actual crime is not committed by the ISP itself
- Popular examples:
 - -http://en.wikipedia.org/wiki/Intercage
 - -http://en.wikipedia.org/wiki/Russian_Business_Network

- Get the victims to host and spread the malware!
 - -Cheap, highly distributed and resilient
 - -Build a own network of robots, a so-called "botnet"
 - The victim hosts are controls by malware and turned into "bots"
 - Payload and malicious services are distributed across the botnet
 - · Control via IRC, P2P, etc.
- "Fast Flux" is a common design to turn bots (victims) into:
 - Rogue DNS servers
 - Reverse proxies for rogue websites
 - -Malicious domains needed to run the infrastructure
- Bots are "selected" to offer a load-balanced + resilient service:
 - -Selection based on availability, bandwidth, performance, etc.
 - -Short time-to-live, rapid turn over of the bots

- Solution 3
 - Fast Flux:
 - "Both the DNS A record sets and the authoritative NS records for a malicious domain are continually changed in a round robin manner"

- Example of Fast Flux tracking with Zeus:
 - http://en.wikipedia.org/wiki/Zeus_%28trojan_horse%29
 - The Zeus botnet is targeting login credentials
 - -Facebook, Yahoo, Hi5, Metroflog, Sonico and Netlog etc.
 - -Targeting banking sites as well
 - The botnet is estimated to include millions of compromised computers
 - As of October 28, 2009 Zeus has sent out over 1.5 million phishing messages on Facebook.
 - On September 29, 2010, 19 people were arrested in the UK: "The gang - hoping to evade suspicion - opened scores of "drop" bank accounts in various banks and used money mules to collect the stolen money. It is believed that they have stolen around £6 million in some three months, and possibly even more."

- Solution 3
 - Example malicious URLs:
 - http://ielaithereej.com/bin/aiphaipi.bin (Zeus v2 + config file)
 - Where is this host?

- Solution 3
 - Example of Fast Flux tracking:

The 40 newest bots assigned to the domain ielaithereej.com:

Domain	Dateadded (UTC)	IP address	Hostname	AS number	Country	Counter
ielaithereej.com	2010-05-27 16:11:14	85.175.99.10		25490		16
ielaithereej.com	2010-05-27 16:11:13	82.131.233.62	82.131.233.62.pool.invitel.hu	12301		19
ielaithereej.com	2010-05-27 16:11:13	121.121.34.46		9534		15
ielaithereej.com	2010-05-27 16:11:13	178.160.84.39		35648		22
ielaithereej.com	2010-05-27 16:06:15	201.238.58.150		8048		68
ielaithereej.com	2010-05-27 16:06:09	79.114.224.60	79-114-224-60.rdsnet.ro	8708		72
ielaithereej.com	2010-05-27 15:56:12	186.99.182.172		27921		34
ielaithereej.com	2010-05-27 15:56:11	85.96.154.90	dsl.dynamic859615490.ttnet.net.tr	9121	C-	33
ielaithereej.com	2010-05-27 15:56:11	87.10.107.225	host225-107-dynamic.10-87-r.retail.telecomitalia.i	3269		59
ielaithereej.com	2010-05-27 15:51:57	95.75.120.214		16232		17
ielaithereej.com	2010-05-27 15:51:20	117.194.160.254		9829	1	108
ielaithereej.com	2010-05-27 15:51:20	82.131.227.213	82.131.227.213.pool.invitel.hu	12301		19
ielaithereej.com	2010-05-27 15:46:31	92.41.90.213	92.41.90.213.sub.mbb.three.co.uk	21327	NV 2N	137
ielaithereej.com	2010-05-27 15:46:21	94.232.121.253	ppp-94.232.121.253.dobroe.ru	42322		142

http://dnsbl.abuse.ch/fastfluxtracker.php

How does this work?

Popular for-profit malware

Malware business

- Malware infrastructure has become more sophisticated:
 - Malicious software developers: provide exploits and tools
 - Bot herders: maintain and rent the bot infrastructure
 - Money mules: turn "dirty" money into real currencies
 - Malware hosting, etc.
 - Coordination via Internet forums, IRC, IM, etc.
- A closer look on the actual tools
 - Easy to use
 - Enable automated attacks
 - Very sophisticated


```
Terminal - ssh - ttys000 - 97×33
/bin/true:
               file format elf64-x86-64
Disassembly of section .interp:
00000000000400200 <.interp>:
  400200:
                2f
                                          (bad)
  400201:
                                          insb
                                                 (%dx), %es:(%rdi)
  400202:
                69 62 36 34 2f 6c 64
                                          imul
                                                 $0x646c2f34,0x36(%rdx),%esp
  400209:
                2d 6c 69 6e 75
                                                 $0x756e696c, %eax
                                          sub
                78 2d
  40020e:
                                          js
                                                 40023d < cxa acexit@plt=0xaf3>
                78 38
                                                 40024a < cxa atexit@plt-0xae6>
  400210:
                                          js
                36
  400212:
  400213:
                2d 36 34 2e 73
                                                 $0x73223436, %eax
                                                 %ds*(%rsi),(%dx)
                6f
  400218:
                                          outsl
                                                  s:(%rax),%al
  400219:
                2e 32 00
                                          xor
Disassembly of section .note.ABI-tag:
000000000040021c <.note.ABI-tag>:
                                                 $0x0,%al
  40021c:
                04 00
                                          add
  40021e:
                00 00
                                          add
                                                 %al,(%rax)
  400220:
                10 00
                                          adc
                                                 %al,(%rax)
  400222:
                00 00
                                          add
                                                 %al,(%rax)
  400224:
                01 00
                                          add
                                                 %eax,(%rax)
  400226:
                00 00
                                                 %al,(%rax)
                                          add
                47
  400228:
                                          rexxyz
  400229:
                 e 55
                                          rex64XY push %rbp
                00 00
  40022b:
                                                 %al,(%rax)
                                          add
                00 00
                                                 %al,(%rax)
  40022d:
                                          add
  40022f
                00 02
                                          add
                                                 %al,(%rdx)
  400231:
                00 00
                                                 %al,(%rax)
                                          add
   00233:
                                                 %al,(%rax,%rax,1)
                00 04 00
                                          add
```


Malware interfaces

Modern malware can be convenient and easy to use

Don't get

your own

malware

	SpyEye Builder v1.0.7	Spy Eye v1.0
Kill competitors easily	Path to the main control panel: Alternative path to the main control panel: Path to the formgrabber control panel: Encryption key: Connector interval (sec): Compress build by UPX v3.04w: Kill Zeus:	http://www.yourbotnet2.cn/spyeye/main/ http://www.yourbotnet2.cn/spyeye/formgrabber/ Your Enc. Key 300 Make config & get build Get build
		Are you infected by SpyEye?

- Modern malware can be convenient and easy to use
 - Neon Exploit System v2.0.5 (\$ 400)
 - "Among the modules of exploits that are preinstalled and preconfigured include: IE7 MC, PDF collab, PDF util.printf, PDF foxit reader, MDAC, Snapshot and Flash 9."
 - Eleonore Exploits Pack v1.2 (\$ 700 \$ 1500)
 - "MDAC, MS009-02, Telnet Opera, Font tags FireFox, PDF collab.getIcon, PDF Util.Printf, PDF collab.collectEmailInfo, DirectX DirectShow and Spreadsheet."
 - Limbo Trojan Kit (\$ 300)
 - ElFiesta v3 (\$ 800)
 - Unique Sploits Pack v2.1 (\$ 750)
 - YES Exploit System v2.0.1 (\$800) etc.

Rootkits

- A lookout at the state of Linux rootkits
 - Rootkit: "Designed to hide or obscure the fact that a system has been compromised." (Wikipedia)
 - Software used to maintain malicious access to a compromised host
- Rootkit: first generation
 - Change binaries (ps, ls, netstat, lsof, ssh) or libraries (ld.so.preload, etc.)

– Pros: kernel independent

 Cons: need to be compiled for the target platform, easy to detect

How to detect: check system binaries against trusted instances

• Tripwire, rpm -V, etc.

Rootkits

- Rootkit: second generation
 - Kernel level rootkits
 - Modify kernel structures (syscall table, IDT, etc.)
 - Malicious codes is loaded directly in the kernel
 - Loadable Kernel Modules
 - Direct /dev/mem access (patch kernel on-the-fly)

- *Pros*: difficult to detect, usually includes backdoor features
- Cons: LKM can be disabled, /dev/{k,}mem access now restricted
- How to detect: search for known patterns, or known bugs.
 - rkhunter, chkrootkit, Samhain, etc.

Rootkits

- Rootkit: new trends
 - Filesystem, network stack level rootkits
 - Often used as additional features
 - Hypervisor rootkit
 - Debug register based rootkit
 - Already seen in the wild early 2010...

LCG

What is the impact of grid computing?

Grids are valuable assets

- Grids are valuable to attackers
 - Large numbers of distributed hosts
 - High availability
 - High throughput network

Impact of grid computing over security?

- Significant increase in collaboration between organizations
 - Shared users
 - Attack propagation across different sites
 - Shared resources
 - a user compromise may affect other users
 - Transparent access
 - a malicious user can transparently run malicious code across different sites

Impact of grid computing over security?

- The grid an ideal incident propagation vector?
 - Grid resource providers may share their resources across different unrelated grids and user communities
 - Different grids may provide services to the same community

Impact of grid computing over security?

How many of these incidents were caused by the grid itself?

NONE

- All these incidents were standard site security issues
- However, the grid sites:
 - Could share information to detect and prevent these incidents
 - Could work together to help the unexperienced sites
 - Could collaborate to resolve these incidents
- The grid helped re-enforcing academic security

What are the most common causes of grid security incidents?

Main causes of security incidents

- Compromised user accounts at other sites (SSH)
- Vulnerable Web applications
- Failure to apply security patches
- Weak passwords in some cases → Training

Main causes of security incidents

- Compromised user accounts at other sites (SSH)
- Vulnerable Web applications
- Failure to apply security patches

Training:

- Secure coding
- Check all user input by design

Apply security patches

- Avoid modifying source code yourself
- Use upstream RPMs when possible instead

Security patching (1/3)

- Advanced monitoring of the sites with Pakiti
 - Sites affected by critical vulnerabilities are the main target
 - They can be suspended after 7 days (after appropriate warnings)

Security patching (2/3)

http://pakiti.sourceforge.net

Security patching (3/3)

Main causes of security incidents

- Compromised user accounts at other sites (SSH)

Compromised accounts

- Difficult to manage:
 - Your security depends on the security of your partners
 - Probably no authority over your partners
- Essential to share information and expertise
 - Closely collaborate to resolve incidents
- Adopting common security policies helps a lot

- For all grid infrastructure developers/designers/architects:
 - Assuming the security perimeter is limited to x509 is wrong!

Compromised accounts

- A few things done at CERN in 2010:
 - Improved segregation between clusters (adm <-> general usage)
 - Prevent LKM to be loaded (CAP_SYS_MODULE)
 - Better mapping/traceability of users activity
 - Including a LKM to match network traffic with a PID (and local user).
 - Advanced kernel level root kit detection
 - Reinstallation made easier
 - Public root exploits result in reinstallation of the main front-end
 - Carefully monitoring the virtualization & cloud situation
 - Can we have enough traceability?
 - Can we perform forensics on the VMs we run?

Compromised accounts

- SSH authentication is an issue:
 - Passwords+Keys: sniffed/copied and re-used by attackers
 - The vast majority of Linux incidents at CERN results from compromised account at other sites
- Evaluating multi-factor authentication
 - Disappointed by many existing solutions
 - Financial or service cost
 - Lack of documentation/support, or simply little security benefit
 - Did not fit the environment ("just have to patch your SSH client")
 - Pilot Yubikey service in progress:
 - https://twiki.cern.ch/twiki/bin/view/Main/Yubikeys
 - A few caveats, but seems to be a good trade-off overall

How to be best prepared?

Identify the threats

- Identify the threats
 - Gather service (and security?) experts around a table
 - Identify your assets (= what you are trying to protect)
 - Brainstorm on possible threats against these assets
 - Think evil
 - How would YOU work around existing security systems?
 - What malicious events could severely affect your services?
 - Keywords: internet, exploit, service availability, trust, source code, dependency, vulnerability, confidentiality, privacy, press, partners, student, reputation, availability, illegal, warez, profit, backdoor, software lifecycle

	is it dangerous to	Advanced Search	
	is it dangerous to reheat rice	15,000 results	Preferences Language Tools
	is it dangerous to swallow chewing gum	51,800 results	Larequage Tools
	is it dangerous to drink too much water	431,000 results	
	is it dangerous to fly when pregnant	1,830,000 results	
	is it dangerous to have a laptop on your lap	34,800 results	
dverti	is it dangerous to fly while pregnant	1,680,000 results 1,350,000 results lle,com	
	is it dangerous to holiday in egypt		
	is it dangerous to inhale helium	20,000 results	
	is it dangerous to wake a sleep walker	880,000 results	
	is it dangerous to drink blood	395,000 results	
		done	

Organise threats into risk

- Organise threats into risk
 - Assign a likelihood and impact for each threat
 - How bad would it be if it happened (1 -> 4)?
 - How likely is this threat to actually happen (1 -> 4)?

Impact Likelihood	1	2	3	4
1	1	2	3	4
2	2	4	6	8
3	3	6	9	12
4	4	8	12	16

Service and security expert can help

Manage the risks

Manage the risks

Order the risks based on the scores. The most important risks are on top.

Score	Impact	Likelihood	Risk	
16	4	4	Remote exploitation of an unpatched operating system security vulnerability	
16	4	4	Developers introduce a local root escalation vulnerability on software the team provides	
8	2	4	A malicious host within the LAN is trying to access the main service database	
8	4	2	Developers leak critical passwords to the public CVS repository	
•••	•••			
4	1	4	A summer student turned out to be evil	

Highlighting the most important risks is essential

Privileged users run malicious code

Define mitigation techniques

- Define mitigation techniques
 - Always try to make smart trade-offs: what is lost versus what is gained
 - Recommendations needs to be effective, but also efficient. It has to be worth it.

Score	Impact	Likelihood	Risk	Mitigation
16	4	4	Remote exploitation of an unpatched operating system security vulnerability	Apply security patches on a regular basis
16	4	4	Developers introduce a local root escalation vulnerability on software the team provides	Review CVS commits for component X & Y
8	2	4	A malicious host within the LAN is trying to access the main service database	Protect the database with password authentication
8	4	2	Developers leak critical passwords to the public CVS repository	Block off-site access to the CVS repository
	•••	•••		
4	1	4	A summer student turned out to be evil	NONE - Accept the risk?
2	2	1	Privileged users run malicious code	NONE - Accept the risk?

If a risk cannot be managed or accepted: escalate to the management

The risk is then accepted or rejected

TOUCHING WIRES CAUSES **INSTANT DEATH** \$200 FINE 💂

Newcastle Tramway Authority

Additional considerations

- Document
 - The risk assessment process you go through and its regular revisions
 - The main risks, including mitigation/recommendations
 - A process for to ensure the mitigation/recommendations are implemented/work
- Important to periodically review the situation and update the recommendations
 - Dynamic/changing environment

Final word of advice

Common pitfalls (quoting Bruce Schneier)

- "People exaggerate spectacular but rare risks and downplay common risks."
- "People underestimate risks they willingly take and overestimate risks in situations they can't control. When people voluntarily take a risk, they tend to underestimate it. When they have n choice but to take the risk, they tend to overestimate it."

Additional notes

- The more complex a system is, the harder it is to improve its security
- Do not underestimate skills/knowledge of attackers (http://www.defcon.org/, http://www.phrack.com/, etc.)
- Know your enemy. Ex:
 - Using AJAX? What are the common security hacks?
 - Webmaster of a public portal? Have your heard about http://zone-h.org/?
- Ask your security team for data/statistics/past experience/advice/recommendations
 - This helps making decisions (ex: to assess impact/likelihood)

Summary

Quizz

Which URL leads you to www.ebay.com?

- ► http://www.ebay.com\cgi-bin\login?ds=1%204324@%31%33%37 %2e %31%33%38%2e%31%33%37%2e%31%37%37/p?uh3f223d
- ► http://www.ebay.com/ws/eBayISAPI.dll?SignIn
- ► http://scgi.ebay.com/ws/eBayISAPI.dll?RegisterEnterInfo&siteid=0&co_partnerid=2&usage=0&ru=http%3A%2F%2Fwww.ebay.com&rafId=0&encRafId=default
- ► http://secure-ebay.com

Soon or later...

- Each site/grid has been or will be affected by a security incident
- Part of normal operations, just need to ensure
 - It is "cheap" to deal with
 - The overall infrastructure is not affected
- It is essential to prepare for this event to reduce its:
 - Impact (appropriate & timely response, etc.)
 - Likelihood (prevention, service hardening, etc.)
- Share information
- Report incidents
- A grid is a strong as its weakest site!

