
lxdistcc

Distributed C/C++
Compilation service

Ian Richard BAKER

KELEMEN Péter

CERN IT OIS

Problem

• Scope: C/C+ + codebases (gcc)
• Isolated developer groups
• Large software packages
• Long compilation times
• Limited hardware resources

Solution

• Compile in parallel
• Throw more CPU at it
• Distribute over the network
• Consolidate resources
• Scale horizontally
• Delegate management
• All of the above: using distcc

Why now?

• distcc is de facto standard
• ATLAS

• Nightly builds using dedicated distcc cluster (lxbuild)

• CMS
• distcc integrated with SCRAM (CHEP'04)

• LHCb
• SLC4/SLC5 build environments, easy target

• Linux.Support (planned)
• ...as the distribution grows, the need arises to reduce compile times of

RPMs (software fixes, security updates)

Compilation

• Write code (*.c, *.cpp)
• Left as an exercise to the reader

• Preprocessing (*.i)
• cpp(1) expands #include's and macros, needs header files

• Compiling (*.s)
• C code is translated into assembly code

• Assembling (*.o)
• Executable machine code is generated from assembly source

• Linking
• Multiple objects are stitched together into an executable, needs libraries

Compilation (distcc)

• Write code (*.c, *.cpp)
• Left as an exercise to the reader

• Preprocessing (*.i)
• cpp(1) expands #include's and macros, needs header files

• Compiling (*.s)
• C code is translated into assembly code

• Assembling (*.o)
• Executable machine code is generated from assembly source

• Linking
• Multiple objects are stitched together into an executable, needs libraries

Terminology

• Compilation unit
• Preprocessed C/C++ source ready to be compiled.

• Object file
• Linkable binary code, result of the compilation.

• Client
• Where your software build is running.

• Server(s)
• Where the compilation jobs are dispatched to.

Technology

• Wrapper around gcc(1)
• client/server model

• One client, many servers talking via a network protocol
• No shared filesystems required
• No virtual machines required

• client: preprocessing
• Using your regular build environment (include headers)

• server: compilation
• Self-contained compilation units, no need for headers/libraries

• client: linking
• Using your regular build environment (shared libraries)

Technology

Clients
- regular build environment
- headers/includes
- libraries
- editors, ...

Servers
- independent
- platform-specific
- no headers
- no libraries

lxdistcc

No Silver Bullet Though...

• Compiler versions
• distcc is compiler-agnostic
• client/server versions are strongly advised to match
• Technically it is possible to support multiple compilers

• Platforms
• Linking objects compiled on different platforms will obviously fail
• Best practice is to have per-platform capacity allocated
• Possibility to grow/shrink capacity just like lxbatch

• You: parallelizable SW build
• The fewer compilation ordering dependencies, the better
• If make -j fails locally, your project cannot build in parallel

• If make -j is not faster on multiple CPUs, distcc won't help either

CERN Improvements to distcc

• GSSAPI authentication
• Prerequisite for a shared resource
• Currently Kerberos V

• whitelist / blacklist
• Log timestamps
• ...submitted to upstream

• Google is current maintainer

• Client integrated in SLC4/SLC5
• User prioritization (planned)

Linux kernel build

CERN IT lxdistcc

• Quattorized server nodes
• 8x x86_64 E5410 cores SLC4/64-bit
• 8x x86_64 E5410 cores SLC5/64-bit
• Easy to add more machines (and architectures)

• Client RPM in SLC4/SLC5
• Available off-the-shelf
• gcc4.3 and LCG gcc versions available with SLC5

• Shared service
• All LHC experiments
• No registration required, but we'd like to hear from you!

• Authentication (GSSAPI)
• Users should present valid Kerberos 5 principal

Timeline

• 2008Q2: project start
• 2008Q3: securing hardware
• 2008Q4: GSSAPI impl'd
• 2009Q1: pilot opens

• 64 cores w/ SLC4/system compiler
• 64 cores w/ SLC5/system compiler

• 2009Q3: established service
• LCG compilers available on cluster
• Statistics, REMEDY support line, LEMON monitoring, …

• 2010Q4: 1yr service (10% FTE)

Host Performance (day)

Cluster Performance (year)

distcc Host Statistics

• ~10M/337 days
• ~30k / day
• ~20 / minute

• Longest job takes ~16 mins

Future

• Intermittent auth timeouts
• Currently investigating...

• Move to virtual machines
• Recent tests of almost-bare-metal CPU performance is promising

• Log analysis for statistics
• Move to rsyslog from dedicated logfile
• Later centralize logging

• Introduce pump-mode
• Requires porting work for the python include-server for SLC5

• Look at Google's next-gen project
• Whenever it becomes open-source... principle is constant recompilation

based on source dependencies

distcc-pump

• Write code (*.c, *.cpp)
• Left as an exercise to the reader

• Preprocessing (*.i)
• cpp(1) expands #include's and macros, needs header files

• Compiling (*.s)
• C code is translated into assembly code

• Assembling (*.o)
• Executable machine code is generated from assembly source

• Linking
• Multiple objects are stitched together into an executable, needs libraries

Build a Community

• Invite feedback, suggestions
• linux-distcc@cern.ch, open mailing list
• User documentation

• Work with early adopters
• Migrate existing distcc users (DONE)
• Invite new interested parties

• Spread the word!
• User docs in Wiki

https://twiki.cern.ch/twiki/bin/view/LinuxSupport/DistccPilotService

mailto:linux-distcc@cern.ch

Questions?

Thank you for your attention.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

