

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Muon Colliders – "Light at the End of the Tunnel" for HEP

Vladimir Shiltsev

FNAL LPC Meeting, June 9, 2020

ABSTRACT

Tighter requirements of new green standards for power consumption, the need to stay within reasonable costs of accelerator facility while aspiring for order of magnitude beyond the LHC center of mass energy in particle collisions call for a drastic paradigm shift from the "bigger, more powerful and more costly" tradition of HEP colliders of the past 50 years. I will review comparative advantages and challenges of multi-TeV muon colliders and argue that only since very recently we have proven the machine feasibility and are ready to start working toward complete technical design two decades from now for the concept of muon colliders, which offer unique option to advance the particle physics frontier and open the Promise land beyond the Standard Model.

High Energy $\mu + \mu$ - **Colliders**

Advantages:

- µ's do not radiate when bent → acceleration in rings → smaller footprint low cost great power efficiency
- ~ x7 energy reach vs pp

Offer "moderately conservative - moderately innovative" path to cost affordable energy frontier colliders:

Power efficiency

Collider Center of Mass Energy (TeV)

arXiv:2003.09084

"equivalent" reach in pp after rescaling for pdf's

Cost

Project	Type	Energy	$N_{\rm det}$	$\mathcal{L}_{\mathrm{int}}$	Time	Power	Cost
	457	(TeV, c.m.e.)		(ab^{-1})	(years)	(MW)	
ILC	e^+e^-	0.25	1	2	11	129	4.8-5.3BILCU
		0.5	1	4	10	163(204)	8.0 BILCU
	1211	1	1			300	+(n/a)
CLIC	e^+e^-	0.38	1	1	8	168	5.9 BCHF
		1.5	1	2.5	7	370	+ 5.1 BCHF
		3	1	5	8	590	+7.3 BCHF
CEPC	e^+e^-	0.091 & 0.16	2	16 + 2.6	2 + 1	149	5 B USD
	100	0.24	2	5.6	7	266	+(n/a)
FCC-ee	e^+e^-	0.091 & 0.16	2	150 + 10	4 + 1	259	10.5 BCHF
		0.24	2	5	3	282	
		0.365 & 0.35	2	1.5 + 0.2	4 + 1	340	+1.1 BCHF
LHeC	ep	1.3	1	1	12	(+100)	1.75^* BCHF
HE-LHC	pp	27	2	20	20	220	7.2 BCHF
FCC-hh	pp	100	2	30	25	580	17(+7) BCHF
FCC-eh	ep	3.5	1	2	25	(+100)	1.75 BCHF
Muon Collider	$\mu\mu$	14	2	50	15	290	10.7^* BCHF

Muon Collider (2020) : Sub-Systems (approx. in scale)

1.5-4 TeV Muon Collider (ca.2007)

Shiltsev - Muon Colliders: Pro & Cons

Comparison of Particle Colliders To reach higher and higher collision energies, scientists have built and proposed larger and larger machines.

CLIC l=50km VLHC

d=74km

Why the cost is so low ?

A. (Most important) much less RF

B. (Smaller) size matters

C. (Lower) Power consuption

αβγ - Cost Estimate Model:

Cost(TPC) = $\alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

- a) $\pm 33\%$ estimate, for a "green field" accelerators
- **b)** "US-Accounting" = TPC ! (~ 2-2.5 × European Accounting)
- c) Coefficients (units: 10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(L/10 km)
 - β≈ 10B\$/sqrt(*E*/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(*E*/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(*E*/TeV) for NC magnets

γ≈ 2B\$/sqrt(*P*/100 MW)

USE AT YOUR OWN RISK!

!!!

Luminosity goal

Collecting 100 events might be sufficient to discover new particles with easily identifiable decay products, such as Stops and Top Partners related with Naturalness. An instantaneous luminosity of $2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, at 10 TeV, would be sufficient to probe these particles up to the collider reach. Ten thousands events would instead be needed to aim at percent-level measurements of electroweak SM processes at high invariant mass, allowing to probe hundreds of TeV New Physics scales indirectly as **b** previously mentioned. In this case the luminosity requirement becomes:

Parameter table

(* indicates collider rings which fit the LHC tunnel)

Center of mass energy \sqrt{s} (TeV)	.126	3	14
Circumference (km)	.3	$4.5~(26.7^*)$	$14\ (26.7^*)$
Interaction regions	1	2	2
Peak luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	0.008	4.4	40
Int. lum. per exp. $(ab^{-1}/year)$	0.001	0.5	3
Time between coll. (μs)	1	0.025	90
Cycle rep. rate (Hz)	1	$6(35^{*})$	$4(7^{*})$
Energy spread (rms, $\%$)	0.004	0.1	0.1
Bunch length (rms, mm)	63	5	1
IP beam size (μm)	75	3.0	0.6
β^* , amplitude function at IP (mm)	17	5	1
Avg. magnetic field (T)	10(?)	$8(5.5^*)$	$10.5(5.5^*)$
Max. magnetic field (T)	10(?)	12	16
Proton driver beam power (MW)	4	4	1
Total facility AC power (MW)	200	230	290

Subsystems

- (i) a high power proton driver (SRF 4 GeV 2-4 MW H- linac);
- (ii) pre-target accumulation and compressor rings, in which highintensity 1-3 ns long proton bunches are formed;
- (iii) a liquid mercury target for converting the proton beam into a tertiary muon beam with energy of about 200 MeV;
- (iv) a multi-stage ionization cooling section that reduces the transverse and longitudinal emittances and, thereby, creates a low emittance beam;
- (v) a multistage acceleration (initial and main) system --- the latter employing a series recirculating rapid cycling synchrotrons (RCS) to accelerate muons in a modest number of turns up to 3-7 TeV using high gradient superconducting RF cavities;
- (vi) about 8.5 km diameter collider ring located some 100 m underground, where counter-propagating muon beams are stored and collide over the roughly 1000--2000 turns corresponding to the muon lifetime.

‡ Fermilab

6/9/2020

15 Shiltsev - Muon Colliders: Pro & Cons

Alternative Concepts: μ 's from protons vs μ 's from e+

🛠 Fermilab

6/9/2020

17 Shiltsev - Muon Colliders: Pro & Cons

Neutrino Radiation

1 mSv/yr mitigation ideas: a) depth; b) few mm vertical collider orbit Variation; c) less muons → muon production via positrons

Other notable progress

- Liquid mercury targets:
 - MERIT beam test @ CERN
 - Equivalent to ~ 8 MW avg beam power
- NC RF 50 MV/m in 3 T field
 - Developed and tested at Fermilab
- Rapid cycling HTS magnets
 - Record 12 T/s built and tested at FNAL
- First RF acceleration of muons
 J-PARC MUSE RFQ 90 KeV
- US MAP Collaboration → Int'I
- Low emittance (no cool) concept
- ¹⁹ 45 GeV $e^+ + e^- \rightarrow \mu^+ \mu^-$: CERN fixed target

Path forward

- Become post-LHC (TDR by 2040) = CERN Test Facility by 2025
- Key R&D to secure low cost and power and high Lumi:
 - high field, robust and cost-effective 12-16 T superconducting magnets for the muon production, cooling, acceleration and collision, with power- efficient cryogenics subsystems;
 - high-gradient and robust normal-conducting RF to minimize muon losses during cooling and power-efficient superconducting RF for fast muon acceleration;
 - 3. fast ramping normal-conducting, superferric or superconducting magnets that can be used in a RCS to accelerate the muons;
 - 4. advanced detector concepts and technologies to deal with the background induced by the muon beams, as well as fast, robust, high-resolution beam diagnostics instrumentation.

Develop STRONG physics case and detector concepts !!!

🛟 Fermilab

Back up slides

21 Shiltsev - Muon Colliders: Pro & Cons

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Desi	ign Stu	dies												
Pre-Conceptual Design			Conceptual Design Report			Technical Design Report								
	Hardware Prototypes										_			
				Те	est Faci	lity De	ployme	ent					Prop	
								Test Fa	acility N	leasure	ements	;		
	3T	eV	14	TeV										

Finding Common Denominators * – Three Factors

* to be further discussed in the Symposium's accelerator sessions

- F1 "Technology Readiness" :
- F2 "Energy Efficiency"
- Green
 I 00-200 MW

 Yellow
 CDR
 Yellow
 I 00-400 MW

 Red
 R&D
 Red
 I 00-400 MW
 - F3 "Cost" :
 Green : < LHC
 Yellow : 1-2 x LHC
 Red : > 2x LHC

Higgs Factories	Readiness	Power- Eff.	Cost
ee Linear 250 GeV			
ee Rings 240GeV/tt			
μμ Collider 125 GeV			*
Multi-TeV Colliders	5		
ee Linear 1-3TeV			
pp Rings HE-LHC			
FCC-hh/SppC			
μμ Coll. 3-14 TeV			*

"~NoCooling" Muon Collider

arXiv:1901.06150

Discussion : "Granada Message"

- 1. despite ups and downs over the past 20 years, the mumu concept is not going away and the reasons are [...]
 - Muons are particles of the future e+e- LCs don't work above 3-6 TeV, pp rings above 100-300TeV
 - Generally feasible and VERY cost saving (physic reach 14 Tev mumu = FCChh)
 - Great results from MERIT, MAP and MICE
- 2. µµ offers a "moderately conservative-moderately innovative" way to cost affordable energy frontier colliders
 - We do not call for basic technology breakthroughs MC can be built with magnets and RF (not even record breaking ones)
- 3. major advantages/promises are [...]
 - C.M.Energy reach and resolution (<0.1%)
 - Cost ("LHC \pm 30%" even for 14 TeV)
- 4. key challenges are [...]
 - Muon production and cooling, cost efficient acceleration, detector background and neutrino radiation
 - They are not showstoppers (just) implications on performance , little on energy
- 5. to claim feasibility (CDR in 5 yrs, TDR in 10-15 yrs from now) we need [....R&D program goals]
 - Int'l collaboration with CERN as host, move toward a test facility in ~3-5 years to demo PD- and/or LEMMA- concepts, detector studies and tests

Future pp Colliders at CERN

parameter	FCC-hh		HE-LHC	(HL) LHC
collision energy cms [TeV]	100		27	14
dipole field [T]		16 16		8.33
circumference [km]	1	00	27	27
straight section length [m]	14	400	528	528
# IP	2 main & 2		2 & 2	2&2
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1 1 (0.2)		2.2 (0.44)	(2.2) 1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25
rms bunch length [cm]	7.55		7.55	(8.1) 7.55
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
events/bunch crossing	170	1k (200)	~800 (160)	(135) 27
stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
beta* [m]	1.1-0.3		0.25	(0.20) 0.55
norm. emittance [µm]	2.2 (0.4)		2.5 (0.5)	(2.5) 3.75

• HE-LHC and FCC-hh will be part of the European strategy 2018-2020 exercise

‡ Fermilab

6/9/2020

• Selection of "optimal" pp collisions energy is challenging

Future Energy Frontier Colliders

- All proposals are focused on :
 - (Affordable) Cost and (High) Luminosity
- Usually :
 - Scale of civil construction grows with Energy
 - Cost of accelerator components grows with Energy
 - Requirement site power grows with Energy
- So, the total cost grows with ENERGY
 - Thankfully, not linearly, more like $\cos t \sim \beta E^{\kappa}$, $\kappa \approx \frac{1}{2}...2/3$
 - Take ILC as an example: $0.25 \rightarrow 0.5 \rightarrow 1$ TeV 0.69:1:1.67
 - Still, huge challenge for energies E some x10 of LHC
 - Choice of technology (β) and *prior investments* are critical

🚰 Fermilab

Comparisons

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [v]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.8 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	-
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ep	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

μ+μ- Higgs Factory

V. Barger, et al, Physics Reports 286, 1-51 (1997)

JINST Special Issue (MUON)

Muon Collider	μ+μ-	
Beam Energy	GeV	
Peak Luminosity (10^34)	cm-2 s-1	
Int. Luminosity	ab-1/yr	
Beam dE/E at IP		
Transv. beam sizes at IP x/y	um	
Rms bunch length / beta*	cm	
Crossing angle	urad	
Rep./Rev. frequency	Hz	
Bunch spacing	ns	
# of IPs		
# of bunches		
Length/Circumference	km	
Facility site power	MW	
Cost range		
Timescale till operations		

32

