
hls4ml tutorial
Thea Aarrestad, Vladimir Loncar,
Jennifer Ngadiuba, Maurizio Pierini

Sioni Summers

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Introduction
 hls4ml is a package for executing neural network inference with extremely

low latency on FPGAs

 In this session you will get hands on experience with the hls4ml package

 Translate pre-trained models into FPGA code

 Explore the different handles provided by the tool to optimize the inference

- Latency, throughput, resource usage

 Make our inference more computationally efficient with pruning

 But first…

hls4ml - Dune Tutorial – 3 June 20203.6.2020

What are FPGAs?

Field Programmable Gate Arrays are
reprogrammable integrated circuits

Contain many different building blocks
(‘resources’) which are connected together as
you desire

Originally popular for prototyping ASICs, but now
also for high performance computing

FPGA diagram

hls4ml - Dune Tutorial – 3 June 20203.6.2020

What are FPGAs?

Field Programmable Gate Arrays are
reprogrammable integrated circuits

Logic cells / Look Up Tables perform arbitrary
functions on small bitwidth inputs (2-6)

These can be used for boolean operations,
arithmetic, small memories

Flip-Flops register data in time with the clock
pulse

FPGA diagram

Logic cell

Flip-flop
Look-up

table
(logic)

(registers)

hls4ml - Dune Tutorial – 3 June 20203.6.2020

What are FPGAs?

Field Programmable Gate Arrays are reprogrammable
integrated circuits

DSPs (Digital Signal Processor) are specialized
units for multiplication and arithmetic

Faster and more efficient than using LUTs for these
types of operations

And for Neural Nets, DSPs are often the most scarce

FPGA diagram

DSP

(mutliplication)

hls4ml - Dune Tutorial – 3 June 20203.6.2020

What are FPGAs?

Field Programmable Gate Arrays are
reprogrammable integrated circuits

BRAMs are small, fast memories - RAMs, ROMs,
FIFOs (18Kb each in Xilinx)

Again, memories using BRAMs are more efficient
than using LUTs

A big FPGA has nearly 100Mb of BRAM, chained
together as needed

FPGA diagram

Also contain embedded
components:

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

hls4ml - Dune Tutorial – 3 June 20203.6.2020

What are FPGAs?

In addition, there are specialised blocks for I/O,
making FPGAs popular in embedded systems
and HEP triggers

High speed transceivers with Tb/s total
bandwidth

PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm
implementations

Low power per Op (relative to CPU/GPU)

FPGA diagram

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

Flip-flops (FF) and look up
tables (LUTs) for additions

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Why are FPGAs Fast?
 Fine-grained / resource parallelism

- Use the many resources to work on
different parts of the problem
simultaneously

- Allows us to achieve low latency

 Most problems have at least some
sequential aspect, limiting how low
latency we can go

- But we can still take advantage of it
with…

 Pipeline parallelism

- Use the register pipeline to work on
different data simultaneously

- Allows us to achieve high throughput

Like a production line for data…

hls4ml - Dune Tutorial – 3 June 20203.6.2020

How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which
describe electronic circuits

High Level Synthesis

Compile from C/C++ to VHDL

Pre-processor directives and constraints used
to optimize the design

Drastic decrease in firmware development
time!

Today we’ll use Xilinx Vivado HLS [*

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-
synthesis.pdf

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Jargon
 LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many

to build the algorithm

 FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and
achieve high throughput

 DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

 BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for
more than a few elements

 HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

 HDL - Hardware Description Language - low level language for describing circuits

 RTL - Register Transfer Level - the very low level description of the function and connection
of logic gates

 Latency - time between starting processing and receiving the result

- Measured in clock cycles or seconds

 Initiation Interval - time from accepting first input to accepting next input

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Neural network inference

activation function

m
ultiplication

addition

precomputed and
stored in BRAMs

DSPs logic cells

L1

Ln

LN

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Neural network inference

activation function

m
ultiplication

addition

precomputed and
stored in BRAMs

DSPs logic cells

L1

Ln

LN

How many resources?
DSPs, LUTs, FFs?

Does the model fit in the
latency requirements?

hls4ml - Dune Tutorial – 3 June 20203.6.2020

high level synthesis for machine
learning

https://hls-fpga-machine-learning.github.io/hls4ml/

https://hls-fpga-machine-learning.github.io/hls4ml/

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Today you will learn how to optimize your project through:

- compression: reduce number of synapses or
neurons

- quantization: reduces the precision of the
calculations (inputs, weights, biases)

- parallelization: tune how much to parallelize to
make the inference faster/slower versus FPGA
resources

Efficient NN design for FPGAs

FPGAs provide huge flexibility

Performance depends on how well you take
advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

NN tra
ining

FPGA project

desig
ning

hls4ml tutorial
Part 1: Model Conversion

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Physics case: jet tagging
Study a multi-classification task to be implemented on FPGA:
discrimination between highly energetic (boosted) q, g, W, Z, t initiated jets

 top
other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure
and/or mass ~ 0

17

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Physics case: jet tagging

 top other quarkZ W gluon

Input variables: several observables known to have high
discrimination power from offline data analyses and
published studies [*]

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al.
JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001,
etc..

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Physics case: jet tagging

 Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers

- Softmax activation function for output layer

AUC = area under ROC curve
(100% is perfect, 20% is

random)

 We train (on GPU) the five output multi-classifier on a sample of ~ 1M
events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

 Dataset DOI: 10.5281/zenodo.3602254

 OpenML: https://www.openml.org/d/42468

better

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Efficient NN design: quantization

 In the FPGA we use fixed point representation

 Operations are integer ops, but we can
represent fractional values

 But we have to make sure we’ve used the correct
data types!

0101.1011101010

width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance
at 8 fractional
bits

FP
G

A
 A

U
C

 /
 E

x
p

e
ct

e
d
 A

U
C

FP
G

A
 A

U
C

 /
 E

x
p
e
ct

e
d
 A

U
C

ap_fixed<width bits, integer bits>

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Efficient NN design: quantization
 hls4ml allows you to use different data types everywhere, we will learn

how to use that

 We will also try quantization-aware training with Qkeras

 With quantization-aware we can even go down to just 1 or 2 buts
 See our recent work: https://arxiv.org/abs/2003.06308

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Efficient NN design: parallelization
 Trade-off between latency and FPGA resource usage determined by the

parallelization of the calculations in each layer

 Configure the “reuse factor” = number of times a multiplier is used to do a
computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Less resources/
Less throughput

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Parallelization: DSP usage

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

…

Longer latency

More resources

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Parallelization: Timing

Fully parallel
Each mult. used 1x

Each mult. used 3x

Each mult. used 6x

…

~ 175 ns

~ 75 ns

…

L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

Longer latency

More resources

Latency of layer m

hls4ml - Dune Tutorial – 3 June 20203.6.2020

What we won’t cover today
 Convolutional NNs : the convolutional layer implementation in hls4ml

is in a state of flux, and whatever I show you today will soon be
obsolete
 You could try QKeras training of a CNN and evaluate model accuracy with

hls4ml, but synthesizing the model doesn’t make sense just yet

 Recurrent NNs: these have recently been added, but not yet ready
for a tutorial here!

 What comes after hls4ml… you would need to integrate the ‘IP core’
into a larger design
 For a custom board, you’d need to do this by hand (e.g. CMS L1 Trigger)

 For boards integrated with Vitis, e.g. Alveo, the workflow is quite automatic

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Hands On - Setup
 We have 8 PCs set up with temporary access for this tutorial

- With installation of hls4ml Python env & Vivado HLS software

 The hands on is in the form of Jupyter notebooks served from these
machines

 You’ll need to connect a port on your local machine to the port we’ve
opened for these notebooks, e.g.:

- ssh -N -f -L 8888:localhost:ABCD <user>@lxplusEFG.cern.ch

- Then open ‘localhost:8888’ in your browser

- You will be asked for a token

- The exact ABCD, EFG and token will be provided…

- If port ‘8888’ on your machine is taken (e.g. if you have a local Jupyter
notebook server running), you can use another available port, e.g. 8889, 8890
etc

 List of notebook servers is at:
https://docs.google.com/spreadsheets/d/1dWraLROwLo_Lg2Eg8lrexLQNfNEf-
lvTGbjZggakfw4/edit#gid=0

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Hands On - Setup

After successful connection you should see some notebooks, as here

Go ahead and open “part1”

hls4ml Tutorial

Part 2: Advanced Configuration

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Part 2: Large MLP
 ‘Strategy: Resource’

for larger networks and
higher reuse factor

 Uses a slightly different
HLS implementation of
the dense layer to
compile faster and better
for large layers

 We use a different
partitioning on the first
layer for the best
partitioning of arrays

KerasJson: keras/MNIST_model.json

KerasH5: keras/MNIST_model_weights.h5

OutputDir: my-hls-test

ProjectName: myproject

XilinxPart: xcku115-flvb2104-2-i

ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel

HLSConfig:

 Model:

 Precision: ap_fixed<16,6>

 ReuseFactor: 128

 Strategy: Resource

LayerName:

 dense1:

 ReuseFactor: 112

This model was trained on the MNIST digits classification dataset
Architecture: 784 x 128 x 128 x 128 x 10
Model accuracy: ~97%
Can you calculate the number of DSPs it will use?
(Don’t cheat and look ahead)

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Part 2: Large MLP
 It takes a while to synthesise, so here’s one I made earlier…

 The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 =
1162

============================
============================
+ Timing (ns):
 * Summary:
 +--------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +--------+-------+----------+------------+
 |ap_clk | 5.00| 4.375| 0.62|
 +--------+-------+----------+------------+

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+----------+
 | Latency | Interval | Pipeline |
 | min | max | min | max | Type |
 +-----+-----+-----+-----+----------+
 | 518| 522| 128| 128| dataflow |
 +-----+-----+-----+-----+----------+

=====================================
== Utilization Estimates
=====================================
+---------------------+---------+-------+---------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+---------------------+---------+-------+---------+--------+
DSP	-	-	-	-
Expression	-	-	0	3144
FIFO	1394	-	28998	46116
Instance	568	1162	140203	166361
Memory	-	-	-	-
Multiplexer	-	-	-	7002
Register	-	-	778	-
+---------------------+---------+-------+---------+--------+				
Total	1962	1162	169979	222623
+---------------------+---------+-------+---------+--------+				
Available SLR	2160	2760	663360	331680
+---------------------+---------+-------+---------+--------+				
Utilization SLR (%)	90	42	25	67
+---------------------+---------+-------+---------+--------+				
Available	4320	5520	1326720	663360
+---------------------+---------+-------+---------+--------+				
Utilization (%)	45	21	12	33
+---------------------+---------+-------+---------+--------+

II determined by the largest reuse factor

hls4ml Tutorial

Part 3: Compression

hls4ml - Dune Tutorial – 3 June 20203.6.2020

NN compression methods
 Network compression is a widespread technique to reduce the size, energy

consumption, and overtraining of deep neural networks

 Several approaches have been studied:

- parameter pruning: selective removal of weights based on a particular
ranking
[arxiv.1510.00149, arxiv.1712.01312]

- low-rank factorization: using matrix/tensor decomposition to estimate
informative parameters [arxiv.1405.3866]

- transferred/compact convolutional filters: special structural convolutional
filters to save parameters [arxiv.1602.07576]

- knowledge distillation: training a compact network with distilled knowledge
of a large network [doi:10.1145/1150402.1150464]

 Today we’ll use the tensorflow model sparsity toolkit
- https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

 But you can use other methods!

hls4ml - Dune Tutorial – 3 June 20203.6.2020

TF Sparsity
 Iteratively remove low magnitude weights, starting with 0 sparsity,

smoothly increasing up to the set target as training proceeds

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Efficient NN design: compression

 DSPs (used for multiplication) are
often limiting resource

- maximum use when fully
parallelized

- DSPs have a max size for input
(e.g. 27x18 bits), so number of
DSPs per multiplication changes
with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

hls4ml Tutorial

Part 4: Quantization

hls4ml - Dune Tutorial – 3 June 20203.6.2020

QKeras
 QKeras is a library to train models with

quantization in the training

 Maintained by Google

 Easy to use, drop-in replacements for
Keras layers

 e.g. Dense → QDense

 e.g. Conv2D → QConv2D

 Use ‘quantizers’ to specify how
many bits to use where

 Same kind of granularity as hls4ml

 Can achieve good performance with
very few bits

 We’ve recently added support for
QKeras-trained models to hls4ml

 The number of bits used in training
is also used in inference

 The intermediate model is adjusted
to capture all optimizations possible
with QKeras

hls4ml - Dune Tutorial – 3 June 20203.6.2020

Summary
 After this session you’ve had some hands on experience with hls4ml

- Translated trained neural networks to FPGA firmware

- Simulated the quantized firmware, checking performance

- Synthesized the network, inspecting the resource and timing summary

 Seen how to simply prune a neural network and the impact on resources

 Trained a model with small number of bits using QKeras

 If you’d like to continue working with hls4ml and Vivado HLS, ask about
adding your CERN user account to these PCs setup with the tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

