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Introduction
 hls4ml is a package for executing neural network inference with extremely 

low latency on FPGAs

 In this session you will get hands on experience with the hls4ml package

 Translate pre-trained models into FPGA code

 Explore the different handles provided by the tool to optimize the inference

- Latency, throughput, resource usage

 Make our inference more computationally efficient with pruning

 But first…
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What are FPGAs?

Field Programmable Gate Arrays are 
reprogrammable integrated circuits

Contain many different building blocks 
(‘resources’) which are connected together as 
you desire

Originally popular for prototyping ASICs, but now 
also for high performance computing

FPGA diagram
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What are FPGAs?

Field Programmable Gate Arrays are 
reprogrammable integrated circuits

Logic cells / Look Up Tables perform arbitrary 
functions on small bitwidth inputs (2-6)

These can be used for boolean operations, 
arithmetic, small memories

Flip-Flops register data in time with the clock 
pulse

FPGA diagram

Logic cell

Flip-flop
Look-up 

table
(logic)

(registers)
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What are FPGAs?

Field Programmable Gate Arrays are reprogrammable 
integrated circuits

DSPs (Digital Signal Processor) are specialized 
units for multiplication and arithmetic

Faster and more efficient than using LUTs for these 
types of operations

And for Neural Nets, DSPs are often the most scarce

FPGA diagram

DSP

(mutliplication)



hls4ml - Dune Tutorial – 3 June 20203.6.2020

What are FPGAs?

Field Programmable Gate Arrays are 
reprogrammable integrated circuits

BRAMs are small, fast memories - RAMs, ROMs, 
FIFOs (18Kb each in Xilinx)

Again, memories using BRAMs are more efficient 
than using LUTs

A big FPGA has nearly 100Mb of BRAM, chained 
together as needed

FPGA diagram

Also contain embedded 
components:

Digital Signal Processors (DSPs): 
logic units used for multiplications

Random-access memories (RAMs): 
embedded memory elements
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What are FPGAs?

In addition, there are specialised blocks for I/O, 
making FPGAs popular in embedded systems 
and HEP triggers

High speed transceivers with Tb/s total 
bandwidth

PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm 
implementations

Low power per Op (relative to CPU/GPU)

FPGA diagram

Digital Signal Processors (DSPs): 
logic units used for multiplications

Random-access memories (RAMs): 
embedded memory elements

Flip-flops (FF) and look up 
tables (LUTs) for additions
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Why are FPGAs Fast?
 Fine-grained / resource parallelism

- Use the many resources to work on 
different parts of the problem 
simultaneously

- Allows us to achieve low latency

 Most problems have at least some 
sequential aspect, limiting how low 
latency we can go

- But we can still take advantage of it 
with…

 Pipeline parallelism

- Use the register pipeline to work on 
different data simultaneously

- Allows us to achieve high throughput

Like a production line for data…
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How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which 
describe electronic circuits

High Level Synthesis

Compile from C/C++ to VHDL

Pre-processor directives and constraints used 
to optimize the design

Drastic decrease in firmware development 
time!

Today we’ll use Xilinx Vivado HLS [*

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-
synthesis.pdf
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Jargon
 LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many 

to build the algorithm

 FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and 
achieve high throughput

 DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

 BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for 
more than a few elements

 HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

 HDL - Hardware Description Language - low level language for describing circuits

 RTL - Register Transfer Level - the very low level description of the function and connection 
of logic gates

 Latency - time between starting processing and receiving the result

- Measured in clock cycles or seconds

 Initiation Interval - time from accepting first input to accepting next input
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Neural network inference

activation function

m
ultiplication

addition

precomputed and 
stored in BRAMs

DSPs logic cells

L1

Ln

LN
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Neural network inference

activation function

m
ultiplication

addition

precomputed and 
stored in BRAMs

DSPs logic cells

L1

Ln

LN

How many resources? 
DSPs, LUTs, FFs?

Does the model fit in the 
latency requirements?
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high level synthesis for machine 
learning

https://hls-fpga-machine-learning.github.io/hls4ml/

https://hls-fpga-machine-learning.github.io/hls4ml/
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Today you will learn how to optimize your project through:

- compression: reduce number of synapses or 
neurons

- quantization: reduces the precision of the 
calculations (inputs, weights, biases)

- parallelization: tune how much to parallelize to 
make the inference faster/slower versus FPGA 
resources

Efficient NN design for FPGAs

FPGAs provide huge flexibility

Performance depends on how well you take 
advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency 

NN tra
ining

FPGA project

desig
ning



hls4ml tutorial
Part 1: Model Conversion
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Physics case: jet tagging
Study a multi-classification task to be implemented on FPGA: 
discrimination between highly energetic (boosted) q, g, W, Z, t initiated jets

 top
other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure
and/or mass ~ 0

17
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Physics case: jet tagging

 top other quarkZ W gluon

Input variables: several observables known to have high 
discrimination power from offline data analyses and 
published studies [*] 

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. 
JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, 
etc..
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Physics case: jet tagging

 Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers

- Softmax activation function for output layer

AUC = area under ROC curve
(100% is perfect, 20% is 

random)

 We train (on GPU) the five output multi-classifier on a sample of ~ 1M 
events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

 Dataset DOI: 10.5281/zenodo.3602254

 OpenML: https://www.openml.org/d/42468 

better

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001
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Efficient NN design: quantization

 In the FPGA we use fixed point representation

 Operations are integer ops, but we can 
represent fractional values

 But we have to make sure we’ve used the correct 
data types!

0101.1011101010

width

fractionalinteger

Full performance 
at 6 integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance 
at 8 fractional 
bits
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Efficient NN design: quantization
 hls4ml allows you to use different data types everywhere, we will learn 

how to use that 

 We will also try quantization-aware training with Qkeras

 With quantization-aware we can even go down to just 1 or 2 buts
 See our recent work: https://arxiv.org/abs/2003.06308
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Efficient NN design: parallelization
 Trade-off between latency and FPGA resource usage determined by the 

parallelization of the calculations in each layer

 Configure the “reuse factor” = number of times a multiplier is used to do a 
computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Less resources/
Less throughput
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Parallelization: DSP usage

Fully parallel
Each mult. used 1x

Each mult. used 2x 

Each mult. used 3x 

…

Longer latency

More resources
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Parallelization: Timing

Fully parallel
Each mult. used 1x

Each mult. used 3x 

Each mult. used 6x 

…

~ 175 ns

~ 75 ns

…

L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

Longer latency

More resources

Latency of layer m
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What we won’t cover today
 Convolutional NNs : the convolutional layer implementation in hls4ml 

is in a state of flux, and whatever I show you today will soon be 
obsolete
 You could try QKeras training of a CNN and evaluate model accuracy with 

hls4ml, but synthesizing the model doesn’t make sense just yet

 Recurrent NNs: these have recently been added, but not yet ready 
for a tutorial here!

 What comes after hls4ml… you would need to integrate the ‘IP core’ 
into a larger design
  For a custom board, you’d need to do this by hand (e.g. CMS L1 Trigger)

 For boards integrated with Vitis, e.g. Alveo, the workflow is quite automatic



hls4ml - Dune Tutorial – 3 June 20203.6.2020

Hands On - Setup
 We have 8 PCs set up with temporary access for this tutorial

- With installation of hls4ml Python env & Vivado HLS software

 The hands on is in the form of Jupyter notebooks served from these 
machines

 You’ll need to connect a port on your local machine to the port we’ve 
opened for these notebooks, e.g.:

- ssh -N -f -L 8888:localhost:ABCD <user>@lxplusEFG.cern.ch

- Then open ‘localhost:8888’ in your browser

- You will be asked for a token

- The exact ABCD, EFG and token will be provided…

- If port ‘8888’ on your machine is taken (e.g. if you have a local Jupyter 
notebook server running), you can use another available port, e.g. 8889, 8890 
etc

 List of notebook servers is at: 
https://docs.google.com/spreadsheets/d/1dWraLROwLo_Lg2Eg8lrexLQNfNEf-
lvTGbjZggakfw4/edit#gid=0
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Hands On - Setup

After successful connection you should see some notebooks, as here

Go ahead and open “part1”



hls4ml Tutorial

Part 2: Advanced Configuration



hls4ml - Dune Tutorial – 3 June 20203.6.2020

Part 2: Large MLP
 ‘Strategy: Resource’ 

for larger networks and 
higher reuse factor

 Uses a slightly different 
HLS implementation of 
the dense layer to 
compile faster and better 
for large layers

 We use a different 
partitioning on the first 
layer for the best 
partitioning of arrays

KerasJson: keras/MNIST_model.json

KerasH5:   keras/MNIST_model_weights.h5

OutputDir: my-hls-test

ProjectName: myproject

XilinxPart: xcku115-flvb2104-2-i

ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel

HLSConfig:

  Model:

    Precision: ap_fixed<16,6>

    ReuseFactor: 128

 Strategy: Resource

LayerName:

   dense1:

     ReuseFactor: 112

  
This model was trained on the MNIST digits classification dataset
Architecture: 784 x 128 x 128 x 128 x 10
Model accuracy: ~97%
Can you calculate the number of DSPs it will use?
(Don’t cheat and look ahead)
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Part 2: Large MLP
 It takes a while to synthesise, so here’s one I made earlier…

 The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 
1162             

============================
============================
+ Timing (ns): 
    * Summary: 
    +--------+-------+----------+------------+
    |  Clock | Target| Estimated| Uncertainty|
    +--------+-------+----------+------------+
    |ap_clk  |   5.00|     4.375|        0.62|
    +--------+-------+----------+------------+

+ Latency (clock cycles): 
    * Summary: 
    +-----+-----+-----+-----+----------+
    |  Latency  |  Interval | Pipeline |
    | min | max | min | max |   Type   |
    +-----+-----+-----+-----+----------+
    |  518|  522|  128|  128| dataflow |
    +-----+-----+-----+-----+----------+

=====================================
== Utilization Estimates
=====================================
+---------------------+---------+-------+---------+--------+
|         Name        | BRAM_18K| DSP48E|    FF   |   LUT  |
+---------------------+---------+-------+---------+--------+
|DSP                    |        -|      -|        -|       -|
|Expression         |        -|      -|        0|    3144|
|FIFO                    |     1394|      -|    28998|   46116|
|Instance             |      568|   1162|   140203|  166361|
|Memory               |        -|      -|        -|       -|
|Multiplexer          |        -|      -|        -|    7002|
|Register             |        -|      -|      778|       -|
+---------------------+---------+-------+---------+--------+
|Total                    |     1962|   1162|   169979|  222623|
+---------------------+---------+-------+---------+--------+
|Available SLR        |     2160|   2760|   663360|  331680|
+---------------------+---------+-------+---------+--------+
|Utilization SLR (%)  |       90|     42|       25|      67|
+---------------------+---------+-------+---------+--------+
|Available            |     4320|   5520|  1326720|  663360|
+---------------------+---------+-------+---------+--------+
|Utilization (%)      |       45|     21|       12|      33|
+---------------------+---------+-------+---------+--------+

II determined by the largest reuse factor
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Part 3: Compression
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NN compression methods
 Network compression is a widespread technique to reduce the size, energy 

consumption, and overtraining of deep neural networks 

 Several approaches have been studied:

- parameter pruning: selective removal of weights based on a particular 
ranking 
[arxiv.1510.00149, arxiv.1712.01312]

- low-rank factorization: using matrix/tensor decomposition to estimate 
informative parameters [arxiv.1405.3866]

- transferred/compact convolutional filters: special structural convolutional 
filters to save parameters [arxiv.1602.07576]

- knowledge distillation: training a compact network with distilled knowledge 
of a large network [doi:10.1145/1150402.1150464]

 Today we’ll use the tensorflow model sparsity toolkit
- https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

 But you can use other methods!



hls4ml - Dune Tutorial – 3 June 20203.6.2020

TF Sparsity
 Iteratively remove low magnitude weights, starting with 0 sparsity, 

smoothly increasing up to the set target as training proceeds

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
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Efficient NN design: compression

 DSPs (used for multiplication) are 
often limiting resource

- maximum use when fully 
parallelized

- DSPs have a max size for input 
(e.g. 27x18 bits), so number of 
DSPs per multiplication changes 
with precision

Fully parallelized 
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available
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Part 4: Quantization
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QKeras
 QKeras is a library to train models with 

quantization in the training

 Maintained by Google

 Easy to use, drop-in replacements for 
Keras layers

 e.g. Dense → QDense

 e.g. Conv2D → QConv2D

 Use ‘quantizers’ to specify how 
many bits to use where

 Same kind of granularity as hls4ml

 Can achieve good performance with 
very few bits

 We’ve recently added support for 
QKeras-trained models to hls4ml

 The number of bits used in training 
is also used in inference

 The intermediate model is adjusted 
to capture all optimizations possible 
with QKeras
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Summary
 After this session you’ve had some hands on experience with hls4ml

- Translated trained neural networks to FPGA firmware

- Simulated the quantized firmware, checking performance

- Synthesized the network, inspecting the resource and timing summary

 Seen how to simply prune a neural network and the impact on resources

 Trained a model with small number of bits using QKeras

 If you’d like to continue working with hls4ml and Vivado HLS, ask about 
adding your CERN user account to these PCs setup with the tools
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