



<-> Frequenz von Pendeln

<-> mehrere Frequenzen

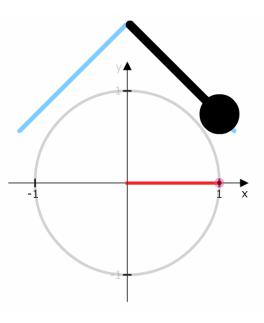
Fakultät Mathematik und Naturwissenschaften, Fachrichtung Physik

### Pendel als "Waage" für Neutrinos

- 1. Masse von Teilchen
- 2. Gekoppelte Pendel
- 3. Überlagerung von Frequenzen <-> Schwebungen
- 4. Neutrino-Oszillationen als Schwebungen
  - a. Solare Neutrinos
  - **b.** Atmosphärische Neutrinos
  - c. Messung eines "Mischungswinkels"
- [ 5. Neutrinos als "Dunkle Materie" ]

## Michael Kobel Fellow-Webinar Netzwerk Teilchenwelt

19. Juni 2020




# TECHNISCHE 1. Masse von Teilchen <-> Frequenz von Pendeln



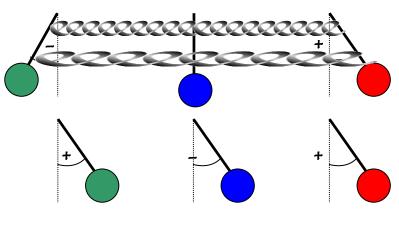
#### **❖** Der Teilchen-Welle "Dualismus" in der Quantenmechanik

- Ein Teilchen ist \*immer\* ein Teilchen, nur seine Aufenthaltswahrscheinlichkeit hat den Charakter einer Welle (→ Auflösung des "Dualismus")
- Ein **Teilchen** hat **klassische Eigenschaften** wie Ladung(en), Impuls p, Energie E, Masse m
- Mit welcher **Wahrscheinlichkeit**  $|\psi|^2$  es sich zur Zeit t am Ort r befindet, beschreibt das Quadrat seine **Wellenfunktion**:  $\psi(r,t) = \mathbf{A} \cdot \cos[\frac{1}{\hbar}(pr Et)] + \dots$  (imaginär)
- Im Ruhsystem des Teilchens ist p=0 und E=mc²  $\psi = A \cdot \cos[\frac{c^2}{\hbar}mt] + ... \text{ (imaginär)}$
- Dies lässt sich 1:1 mit der Auslenkung eines Pendels darstellen:  $x = a \cdot \cos[2\pi f t]$ 
  - $f \sim m$ : die Pendelfrequenz f modelliert die Masse m des Teilchens
  - a ~ A: die Auslenkung a modelliert die Amplitude A der Wellenfunktion

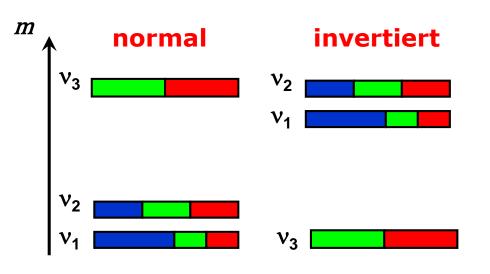


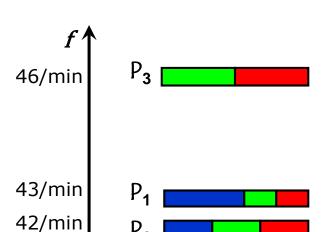
Quelle: https://www.matheretter.de/wiki/kosinusschwingung-pendel




#### 2. Gekoppelte Pendel → Mehrere Frequenzen




$$v_3 = ( -v_{\mu} + v_{\tau}) / \sqrt{2}$$


$$v_2 = (-\mathbf{v}_e + \mathbf{v}_{\mu} + \mathbf{v}_{\tau}) / \sqrt{3}$$

• 
$$v_1 = (2v_e + v_{\mu} + v_{\tau}) / \sqrt{6}$$











### 3. Frequenz-Überlagerung <-> Schwebungen



❖ Beispiel aus der Akustik: Überlagerung zweier Töne



• Das  $\mathbf{v}_e = (\sqrt{2}\mathbf{v}_1 - \mathbf{v}_2)/\sqrt{3}$  ist eine Überlagerung von  $\mathbf{v}_1$  und  $\mathbf{v}_2$ 

$$\left\{ egin{array}{c} rac{
u_1 & & & \\
\hline

u_2 & & & \\
\hline

u_3 & & & \\
\hline
\end{array} \right\} egin{array}{c} 
v_{\mu} \\
\hline

v_{\tau} \\
\hline
v_{e} \\
\hline
\end{array}$$

ightharpoonup Verschwindet "unterwegs" periodisch (Umwandlung in  $v_{\mu} + v_{\tau}$ )

# 4. Schwebungen der Neutrinos → v-Oszillationen

http://neutrinopendel.tu-dresden.de/animation.html

Elektrisch seladene lentonen

Es gibt 3 Sorten von Neutrinos:  $v_e \, v_\mu \, v_\tau \,$  ("Pendel") gekoppelt zu 3 stabilen Moden  $\, v_1 \, v_2 \, v_3 \,$ 



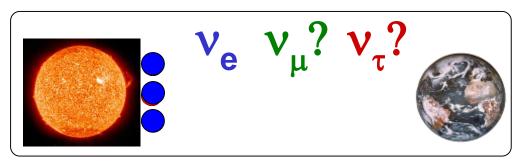
- je größer der Frequenzunterschied (also je stärker die Kopplung) desto schneller die Schwebung
- Bei Herstellung nur einer Neutrinoart:
  - Regelmäßige Umwandlungen in die andere(n) Art(en)
  - Je größer der Massenunterschied, desto schneller die Oszillation
- Bei Nachweis nur einer Neutrinoart:
  - Neutrinos scheinen zu "verschwinden", abhängig von Δm²

Schwebungsperiode T bzw Oszillationslänge L

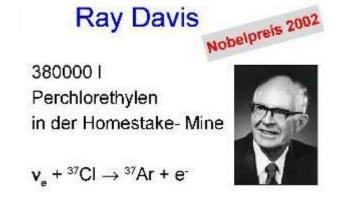
$$T = L/c = \hbar \frac{4\pi E}{\Delta (mc^2)^2}$$

Analog zu akustischen Schwebungen bei kleinen Δf²

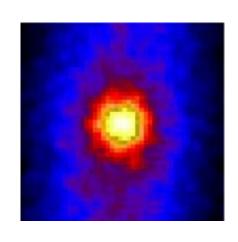
Mit 
$$\omega = 2\pi f$$
 bei kleinem  $\Delta \omega$  
$$T = \frac{2\pi}{\omega_2 - \omega_1} \approx \frac{4\pi\omega_0}{\Delta\omega^2}$$


# Korrespondenzen Akustik <-> Pendel <-> Neutrinos

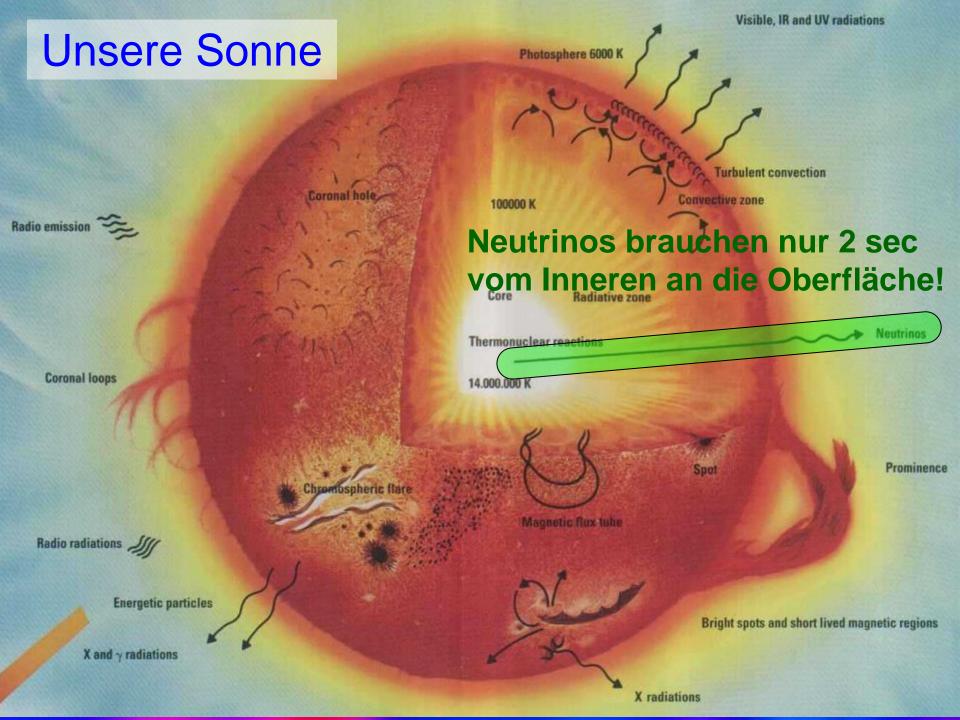



| Akustik                                     | Pendel                                              | Neutrinos                                                             |
|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|
| Schallwelle                                 | Räumliche Schwingung                                | Phase der Wellenfunktion                                              |
| <b>Tönhöhe</b> (feste Frequenz)             | Eigenmoden<br>(→ Eigenfrequenz)                     | Massezustände<br>(→ Phasenfrequenz)                                   |
| Klang=<br>Überlagerung der Töne             | Ein Pendel = Überlagerung der Eigenmoden            | Flavorzustand =  QM-Mischung der Massenzustände                       |
| Lautstärke<br>~Schallamplitude <sup>2</sup> | Energie des Pendels ~Schwingungsamplitude²          | QM-Nachweiswahrscheinlichkeit ~  Wellenfunktion 2                     |
| Schwebungsfrequenz $\sim \Delta f$ der Töne | Schwebungsfrequenz $\sim \Delta f$ der festen Moden | Flavor-Oszillation der Neutripe<br>~ ∆m² der Massezustände<br>Messbar |
| Größenordnung: ~ 1000Hz                     | ~ Größenordnung: 0,01 Hz                            | ~ 0,1 – 10 kHz (Beobac , ~ 0,1 – 10 THz (v-Eigenzeit)                 |

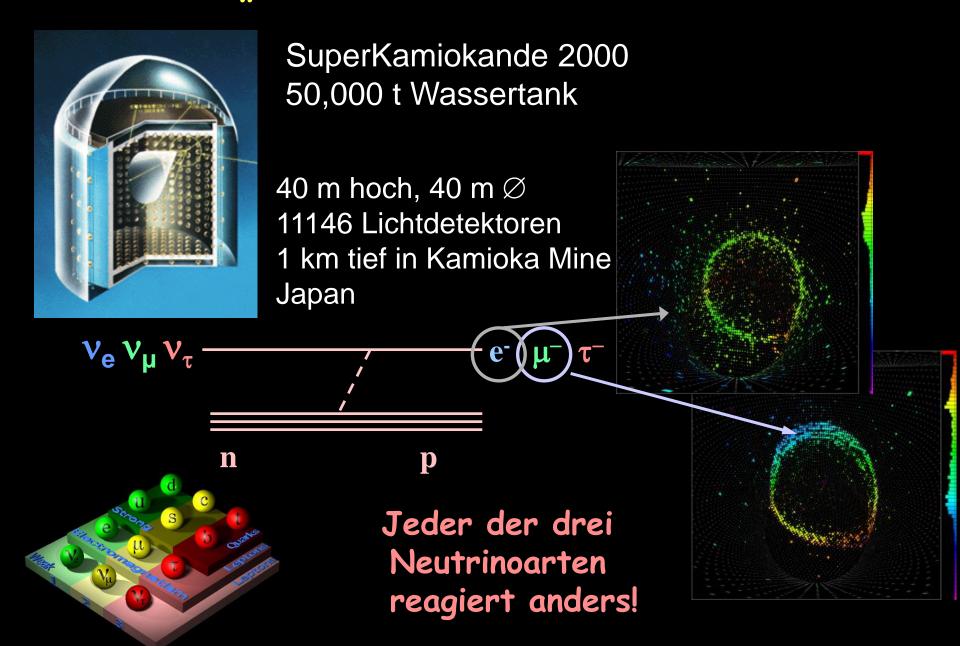
### 4a. Neutrinos aus der Sonne


- ◆ Kernfusion in der Sonne:
   4p → <sup>4</sup>He + 2e<sup>+</sup> + 2v<sub>e</sub> + 27 MeV Energie
   auf der Erde: 10<sup>11</sup> solare Neutrinos / cm<sup>2</sup> und Sekunde
- Produktion:100% als"v<sub>e</sub>-Pendel"

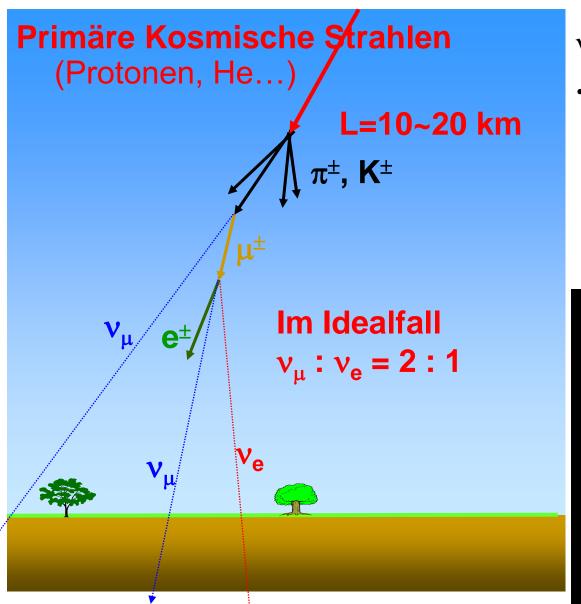



• Davis (1970 -2000):  $v_e$  Nachweis auf der Erde Ergebnis: nur 30% der erwarteten  $v_e$ 



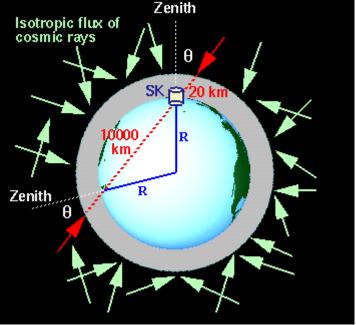

Bestätigung (1995)
 Kamiokande:
 Sonne (*live!*),
 aber nur 1/3 des
 "Neutrinolichts"



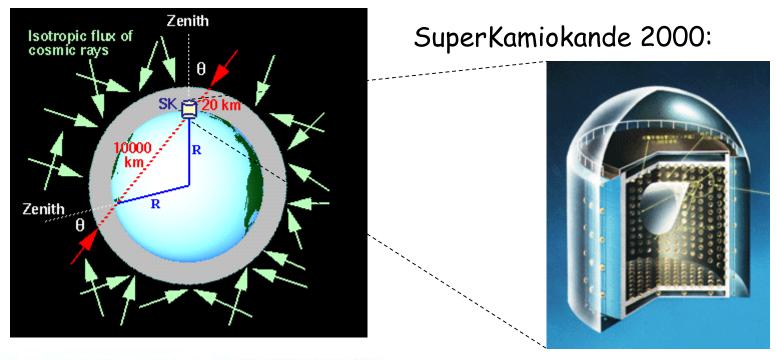

Ausspülen des 37Ar (0.5 Atome/Tag)

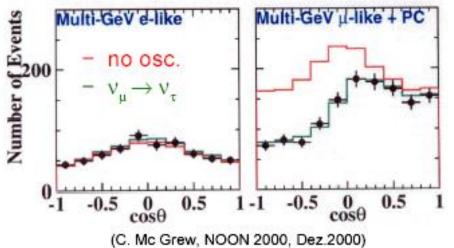


# Der "Überlichtknall" der Neutrinos




# 4b. Atmosphärische Neutrinos





 $v_e$  und  $v_u$  aus Luftschauern:

gemessen aus allen Richtungen



# Messergebnisse





Messung von  $v_e$  und  $v_\mu$ :

- $\cdot$  kein Defizit für  $v_e$
- $\bullet$  bei langen Flugstrecken fehlen  $\nu_{\mu}$
- kompatibel mit  $\nu_{\mu} \rightarrow \nu_{\tau}$

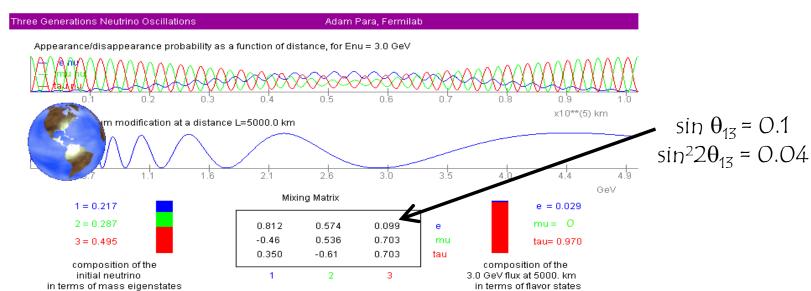
# Atmosphärische Neutrinos

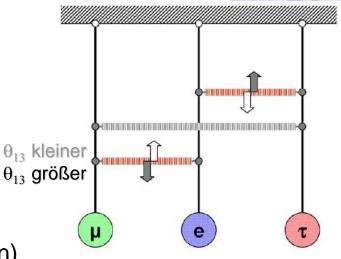
V

- Messung von Kamiokande 2000 erklärt als  $v_{\mu} \rightarrow v_{\tau}$
- Pendel:
  - $\mathbf{v}_{\mu}$ : schwache Feder zu  $\mathbf{v}_{e}$ , starke Feder zu  $\mathbf{v}_{\tau}$   $\mathbf{v}_{e}$  würden erst nach viel längerem Weg erscheinen

#### Interactive Neutrino Oscillation Laboratory Three Generations Neutrino Oscillations Adam Para, Fermilab Appearance/disappearance probability as a function of distance, for Enu = 3.0 GeV x10\*\*(5) km um modification at a distance L=5000.0 km 2.6 3.5 4.9 GeV Mixing Matrix 1 = 0.166e = 0.0092 = 0.333mu = 6.4590.577 0.0 0.816 -0.400.577 0.707 3 = 0.500mu tau = 0.990-0.57 0.707 0.408 composition of the composition of the 1 2 3 initial neutrino 3.0 GeV flux at 5000, km in terms of mass eigenstates in terms of flavor states

http://minos.phy.bnl.gov/nu-osc-lab/Superposition1.html


# 4c. Messung der Mischungswinkel zB: $\theta_{13}$


•  $\mathbf{v}_e$  ist auch ein wenig in  $\mathbf{v}_z$  vertreten:

$$v_3 = (\sin\theta_{13}v_e - v_\mu + v_\tau)/\sqrt{(2.x)}$$

- Atmosphärisches  $v_{\mu} \rightarrow v_{e}$  Auftauchen und
- Reaktor  $\overline{\mathbf{v}}_{\mathrm{e}} 
  ightarrow \overline{\mathbf{v}}_{\mathrm{\tau}} + \overline{\mathbf{v}}_{\mathrm{\mu}}$  Verschwinden
  - langsam direkt über ∆m<sub>12</sub> (schwache Federn)
  - schnell moduliert *indirekt* über  $v_{\tau} v_{\mu}$  mit  $\Delta m_{23}$  (starke Feder)

#### Interactive Neutrino Oscillation Laboratory

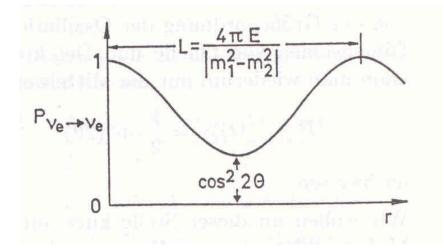






# **Global fit** (<u>www.nu-fit.org</u> and <u>https://arxiv.org/abs/1811.05487</u> M.C.Gonzales-Garcia, M.Maltoni, Th.Schwetz, et. al.




| $\Delta m_{23}^2 = 2451 \pm 32 \text{ meV}^2$ | $\Delta m^2_{13} = 2525 \pm 32 \text{ meV}^2$ | $\Delta m_{12}^2 = 74 \pm 2 \text{ meV}^2$   |
|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|
| "schnelle" Oszillation                        |                                               | "langsame" Oszillation                       |
| $L_{23} \approx 1  km \times E(MeV)$          |                                               | L <sub>12</sub> ≈33km×E(MeV)                 |
| $\theta_{23} = 49.7^{\circ} \pm 1.1^{\circ}$  | $\theta_{13} = 8.6^{\circ} \pm 0.1^{\circ}$   | $\theta_{12} = 33.8^{\circ} \pm 0.8^{\circ}$ |

 $\theta_{atmos, beam}$ 

 $\Theta_{13, \text{ reactor}}$ 

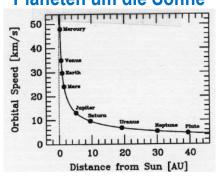
Osolar, reactor

Gemessen aus Amplitude und Oszillationslänge der Schwebung



$$L_{ij} = 2.48 m \frac{E(MeV)}{\Delta m_{ij}^2 (eV^2)}$$

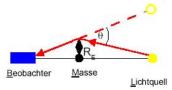
#### 5. Neutrinos als "Dunklen Materie"


- V
- Nur 4-5 % des Universums ist "normale" atomare Materie
- Ca. 23% ist unbekannte "Dunkle Materie"
   (weakly interacting massive particles = WIMPs)
  - Elektrisch Neutral
  - Nur schwache Wechselwirkung
- Noch rätselhafter:
  - Dunkle Energie



NASA/WMAP Science Team

### Viele unabhängige Hinweise

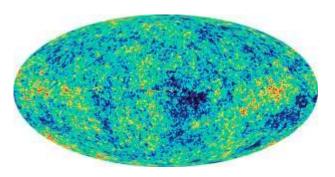

 Rotationsgeschwindigkeit der Planeten um die Sonne



im Kontrast zu ...
Rotationsgeschwind.
der Sterne um das
Galaxienzentrum



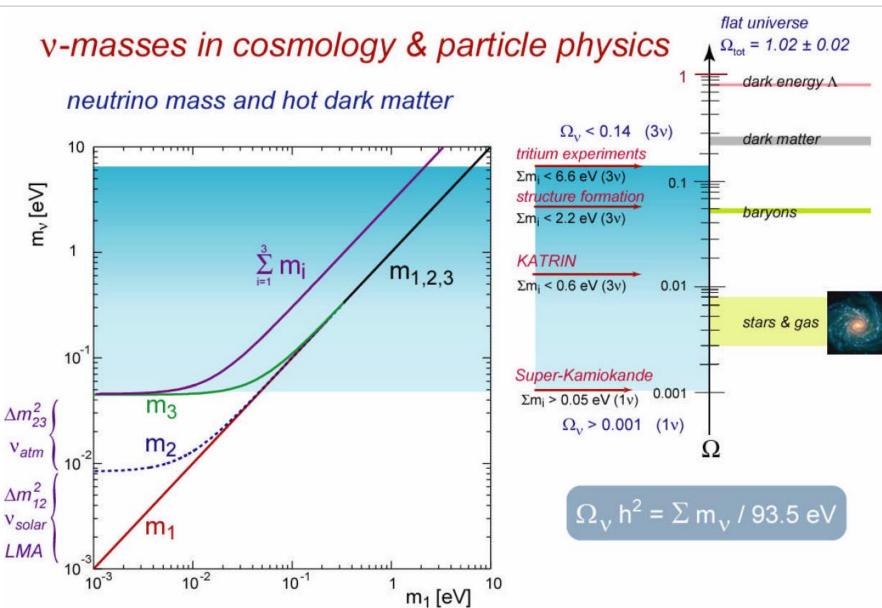
"Gravitationslinsen": Lichtstrahlen werden durch Materie abgelenkt








- Kollision von Galaxienclustern (Chandra Satellit)
- Ursprüngliche Häufigkeit von Kernen
- Strukturbildung im Universum
- Kosmische Hintergrundstrahlung
- ...

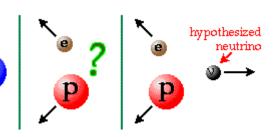

Clowe et al. (2006)





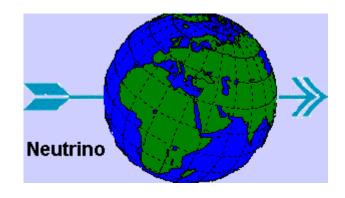







# Sind Neutrinos die "Dunkle Materie"?




1930: theoretische Einführung (Pauli)

1956: experimentelle Entdeckung (Cowan und Reines)



#### **Neutrinos: "Singles" des Universums**

- schwach wechselwirkend:999.999.999 von 1.000.000.000schaffen Erddurchquerung
- im Universum ziemlich verbreitet:
   366.000.000 Neutrinos / m³
   im Vergleich zu 0,2 Protonen / m³



◆ → hätten wesentlichen Beitrag zu Dunkler Materie, selbst wenn 1.000.000.000 Mal leichter als Protonen!!!

Inzwischen klar: sie sind noch leichter! Erklären nur zwischen 0,5% und 15% der dunklen Materie

# Zusammenfassung



- Neutrinos entstehen als Mischung von Masseneigenzuständen und oszillieren analog zu Schwebungen bei Akustik und Pendeln
- Man misst die jeweiligen Mischungsanteile (- Winkel) über die Schwebungsamplituden
- Man misst die **Differenz** der Massenquadrate über die Schwebungsfrequenzen (Oszillationslängen)
- Um die Massen aller Neutrinos ausrechnen zu können, braucht man die direkte Messung einer Masse
  - → KATRIN Experiment will 200 meV/c² Sensitivität für v<sub>e</sub> erreichen
  - $\rightarrow$  Das  $v_e = (\sqrt{2}v_1 v_2 + 0.25v_3)/\sqrt{3}$  könnte aber bis 4meV/c² leicht sein