CONSTRAINTS ON REHEATING TO SM PARTICLES DUE TO LARGE EFFECTIVE HIGGS BOSON MASS DURING INFLATION

GRAPPA, University of Amsterdam (NL)

Luca Visinelli

In collaboration with: Katie Freese, Aliki Litsa, Evangelos Sfakianakis, Patrick Stengel (slides of Aliki Litsa)

CONTENTS

- ▸ Introduction to inflation and Higgs dynamics
- ▸ Temperature fluctuations: Perturbative inflaton decay
- ▸ Temperature fluctuations: Resonant inflaton decay
- ▸ Non-gaussianity

WHY DO WE NEED INFLATION?

- ▸ A period of accelerated expansion in the Early Universe
- ▸ Solution to the horizon, flatness and monopole problems
- ▸ Seeds the observed CMB temperature fluctuations

Causally disconnected patches at CMB decoupling

initially in causal contact

SLOW-ROLL INFLATION

End of accelerated expansion

DURING INFLATION

▶ Potential of the Higgs field for $h \gg v_{\text{EW}} \approx 246 \text{ GeV}$: $V(h) = \lambda (v_{EW}^2 h^2 + v_{EW} h^3 + h^4)/4 \approx \lambda h^4/4$

Initially, the Higgs field is rolling down its potential V(h)

Quantum fluctuations of the Higgs condensate take over

LIGHT SPECTATOR HIGGS DYNAMICS

AFTER INFLATION

 \triangleright Every causally disconnected Hubble patch i, for $i \in \{1,...,n\}$, has a different value of the Higgs $\,h_{i}^{},\,$ which obeys the the equilibrium PDF at the end of inflation

Adapted from D. Baumann, Lectures on Cosmology

- ▸ We assume a Yukawa-type coupling of the inflaton to SM fermions ∝ ϕ f*f*
- ▸ The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as *mi f* $2^2 = y^2 h_i^2 / 2$
- ▸ The inflaton decay rate to the fermion is:

$$
\Gamma_{\phi}^{i} = \Gamma_{0} \left(1 - \frac{4m_{f}^{i^{2}}}{m_{\phi}^{2}} \right)^{3/2} \Theta \left(m_{\phi}^{2} - 4m_{f}^{i^{2}} \right)
$$

- ▸ We assume a Yukawa-type coupling of the inflaton to SM fermions ∝ ϕ f*f*
- ▸ The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as *mi f* $2^2 = y^2 h_i^2 / 2$
- ▸ The inflaton decay rate to the fermion is:

- ▸ We assume a Yukawa-type coupling of the inflaton to SM fermions ∝ ϕ f*f*
- ▸ The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as *mi f* $2^2 = y^2 h_i^2 / 2$
- ▸ The inflaton decay rate to the fermion is:

- ▸ We assume a Yukawa-type coupling of the inflaton to SM fermions ∝ ϕ f*f*
- ▸ The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as *mi f* $2^2 = y^2 h_i^2 / 2$
- ▸ The inflaton decay rate to the fermion is:

SPACE-DEPENDENT REHEAT TEMPERATURE

▸ Reheating at each Hubble patch happens at a different temperature *Tⁱ reh*

SPACE-DEPENDENT REHEAT TEMPERATURE

▸ Reheating at each Hubble patch happens at a different temperature *Tⁱ reh*

UNPERTURBED EQUATIONS

Energy density equations

 $\tilde{f}(h;N)$ $h_i(N)$ $h_1(N)$ $h_2(N)$ $\overline{h_n(N)}$. .
.
. .
.
. . .
.
. .
.
.

 $\frac{1}{2}h_i^3 = 0$

 $d\rho^{\,i}_r$

dN)

End of inflation N e-folds after inflation

 $y = 1$, $\Gamma_0 = 10^{-1} \times m_\phi$, $\lambda_I = 10^{-3}$, $H_I = m_\phi$

DECAY RATE PERTURBATION

- ▶ We define a characteristic value of the Higgs VEV over all $\mathsf{Hubble\, \, patches} \ \ \tilde{h}(N) \equiv \Big(\ \Big\vert \ h^2 \tilde{f}(h;N) dh \, \Big)$ 1/2
- ▸ We define the average decay rate over all patches at the characteristic value \tilde{h} as

$$
\bar{\Gamma}_{\phi} = \Gamma_0 \left(1 - \frac{2y^2 \tilde{h}^2}{m_{\phi}^2} \right)^{3/2} \Theta \left(m_{\phi}^2 - 2y^2 \tilde{h}^2 \right)
$$

▸ The characteristic decay rate perturbation, then, is

$$
\delta_{\Gamma} \equiv \frac{\delta \Gamma_{\phi}}{\bar{\Gamma}_{\phi}} = \begin{cases} -\frac{6y^2 h \, \delta h}{m_{\phi}^2} \left(1 - \frac{2y^2 h^2}{m_{\phi}^2}\right)^{-1} \to -\frac{6y^2 \tilde{h}^2}{m_{\phi}^2} \left(1 - \frac{2y^2 \tilde{h}^2}{m_{\phi}^2}\right)^{-1} & \text{for } m_{\phi}^2 > 4m_{\tilde{f}}^2\\ 0 & \text{for } m_{\phi}^2 \le 4m_{\tilde{f}}^2 \end{cases}
$$

PERTURBED EQUATIONS (DVALI ET. AL 2003)

▸ The perturbations in the inflation and radiation energy densities: $d\delta$ _→ $\bar{\rho}_\phi$ $\bar{\Gamma}$

$$
\frac{\phi}{\sqrt{N}} = 3\frac{d\Phi}{dN} - \frac{\bar{\Gamma}_{\phi}}{H} \left(\delta_{\Gamma} + \Phi \right) \qquad \qquad \frac{d\delta_{r}}{dN} = 4\frac{d\Phi}{dN} + \frac{\bar{\rho}_{\phi}}{\bar{\rho}_{r}} \frac{\bar{\Gamma}_{\phi}}{H} \left(\delta_{\Gamma} + \Phi + \delta_{\phi} - \delta_{r} \right)
$$

▸ The background equations:

dN

 $d\bar{\rho}_r/d\bar{N} = -4\bar{\rho}_r + (\bar{\Gamma}_\phi/H)\bar{\rho}_\phi$ $d\bar{\rho}_r/dN = -3\bar{\rho}_\phi - (\bar{\Gamma}_\phi/H)\bar{\rho}_\phi$ $d\bar{\rho}_r/dN = -4\bar{\rho}_r + (\bar{\Gamma}_\phi/H)\bar{\rho}_\phi$

▸ The gravitational potential perturbation:

$$
\frac{d\Phi}{dN} = -\Phi - \frac{4\pi G}{3H^2} \left(\bar{\rho}_{\phi} \delta_{\phi} + \bar{\rho}_{r} \delta_{r} \right)
$$

▸ The Bardeen parameter perturbation:

$$
\zeta = -\Phi + \frac{\bar{\rho}_{\phi}\delta_{\phi} + \bar{\rho}_{r}\delta_{r}}{3\bar{\rho}_{\phi} + 4\bar{\rho}_{r}}
$$

 \blacktriangleright We plug the $\bar{\Gamma}_{\phi}(N)$ and $\delta_{\Gamma}(N)$ calculated earlier and find $\zeta(N)$

▸ The temperature fluctuations are given by

THEORY

- ▸ Preheating via tachyonic resonant decays of the inflaton to gauge bosons
- ▸ The inflaton couples to U(1) gauge bosons via a Chern-Simons coupling $\propto \phi F^{\mu\nu}\tilde{F}_{\mu\nu}$ /4f
- ▸ The gauge boson gets its mass via a gauge coupling g to the Higgs: $M = g|h|/2$
- ▸ We *cannot define a decay rate* like in the perturbative case!

THEORY

- ▸ Preheating via tachyonic resonant decays of the inflaton to gauge bosons
- ▸ The inflaton couples to U(1) gauge bosons via a Chern-Simons coupling $\propto \phi F^{\mu\nu}\tilde{F}_{\mu\nu}$ /4f
- ▸ The gauge boson gets its mass via a gauge coupling g to the Higgs: $M = g|h|/2$
- ▸ We *cannot define a decay rate* like in the perturbative case!

* We choose $f = 0.1 m_{\text{Pl}}$

METHOD

- \blacktriangleright We again start from a distribution of n Higgs values h_i across n different Hubble patches
- ▸ Each Hubble patch, then, is characterized by a different gauge boson mass $M_{\widetilde{l}}$
- ▸ We solve the EoM of the gauge field at each patch and derive the inflaton an radiation energy densities at each patch, at every point in time $\rho^i_\phi(N),\, \rho^i_r(N)$
- ▸ The energy density background and perturbations can then be defined as:

 $\overline{\rho}_{\phi/r}(N) \equiv \langle \rho_{\phi/r}(N) \rangle$

$$
\delta_{\phi/r} \equiv \sqrt{\langle \rho_{\phi/r}^2(N) \rangle} / \bar{\rho}_{\phi/r}(N)
$$

RESULTS

▸ We plug the background and perturbation functions into the gravitational potential and Bardeen parameter equations for $f = 0.1 m_{\text{Pl}}$

RESULTS

▸ We plug the background and perturbation functions into the gravitational potential and Bardeen parameter equations for $f = 0.1 m_{\text{Pl}}$

PATCH-BY-PATCH METHOD

Energy density equations

 $d\rho_{\phi}^i/dN = -3\rho_{\phi}^i - (\Gamma_{\phi}^i/H^i)\rho_{\phi}^i$

$$
d\rho_r^i/dN = -4\rho_r^i + (\Gamma_\phi^i/H^i)\rho_\phi^i
$$

Higgs EoM

$$
\frac{d^2h_i}{dN^2} + \left(3 + \frac{1}{H^i}\frac{dH^i}{dN}\right)\dot{h}_i + \frac{\lambda_I}{(H^i)^2}h_i^3 = 0
$$

Expansion dynamics

$$
(H^i)^2 = \frac{8\pi G}{3} \left(\rho_{\phi}^i + \rho_r^i\right)
$$

$$
\frac{dH^i}{dN} = \sqrt{\frac{4\pi G}{3\left(\rho_{\phi}^i + \rho_r^i\right)} \left(\frac{d\rho_{\phi}^i}{dN} + \frac{d\rho_r^i}{dN}\right)}
$$

$$
\begin{array}{c}\n\tilde{g}(\rho_{\phi};N) & \tilde{g}(\rho_{r};N) \\
\rho_{\phi}^{1}(N) & \rho_{r}^{1}(N) \\
\rho_{\phi}^{2}(N) & \rho_{r}^{2}(N) \\
\vdots & \vdots \\
\rho_{\phi}^{i}(N) & \rho_{r}^{i}(N) \\
\vdots & \vdots \\
\rho_{\phi}^{n}(N) & \rho_{r}^{n}(N)\n\end{array}
$$

End of inflation N e-folds after inflation

PATCH-BY-PATCH METHOD

 $\overline{\widetilde{g}(\rho_{\phi/r};N)}$

 $\rho_{\rm \bm{\phi}}^{1}$

 $\rho_{\scriptscriptstyle{b}}^2$

ρi

ρn

ϕ/*r*

ϕ/*r*

ϕ/*r*

.

.
.
.

.
.
.

.

ϕ/*r*

.
.
.

.
.
.

(*N*)

(*N*)

(*N*)

(*N*)

We use the definitions of the energy density background and perturbations

$$
\bar{\rho}_{\phi/r}(N) \equiv \langle \rho_{\phi/r}(N) \rangle
$$

$$
\delta_{\phi/r}^{i} \equiv \left(\rho_{\phi/r}^{i}(N) - \bar{\rho}_{\phi/r}(N) \right) / \bar{\rho}_{\phi/r}(N)
$$

NON-GAUSSIANITY DERIVATION

JNL $\textsf{CALCULATION}$ *f NL*

▸ Planck defines non-gaussianity as:

$$
\tilde{g}(\mathcal{T}) = \tilde{g}_G(\mathcal{T}) + f_{NL} \left(\tilde{g}_G^2(\mathcal{T}) - \langle \tilde{g}_G^2(\mathcal{T}) \rangle \right)
$$

▸ The skewness of the temperature fluctuations spectrum is:

$$
\mathcal{S}_H = \langle \tilde{g}^3 \left(\mathcal{T}\right) \rangle
$$

Non-gaussianity in terms of the skewness is:

$$
f_{NL} \approx \frac{\mathcal{S}_{\text{H}}}{6(\Delta T/T|_{\text{CMB}})^4}
$$

- ▸ We assume that NG is dominated by reheating rather than SR dynamics
- ▸ We calculate NG in the green parameter space which is allowed based on temperature fluctuations. According to Planck $\frac{\Delta T}{T}$ $\approx 10^{-5}$. Δ*T* $T\mid_{\mathsf{CMB}}$ $\approx 10^{-5}$

CMB BOUNDS

- ▸ Planck's bounds on non-gaussianity are: $-6 \le f_{NL} \le 5.1$
- ▶ Since our approach does not take smaller scales into account, the bounds will ease by a factor of ~ 10 to:

 $|f_{NL}| \le 70$

CMB BOUNDS

- ▸ Planck's bounds on non-gaussianity are: $-6 \le f_{NL} \le 5.1$
- ▶ Since our approach does not take smaller scales into account, the bounds will ease by a factor of ~ 10 to:

CMB BOUNDS

- ▸ Planck's bounds on non-gaussianity are: $-6 \le f_{NL} \le 5.1$
- ▶ Since our approach does not take smaller scales into account, the bounds will ease by a factor of ~ 10 to:

 $|f_{NL}| \le 70$

22/23

CONCLUSIONS

- ▸ The Higgs as a light spectator field during inflation can cause reheating to SM particles to be space-dependent
- ▸ This space-dependence results in large Higgs-induced temperature fluctuations and non-gaussianity
- ▸ By comparing with Planck observations we can constrain the SM parameter space
- ▸ The bounds placed on the reheat temperatures of SM particles are tighter for reheating to heavier particles
- ▸ We exclude resonant decays (preheating) of the inflaton to SM Higgsed gauge bosons
- ▸ Future study of scale-dependencies can provide more accurate results

